当前可用的治疗方案忽略了每种患者疾病的个性,仅暂时影响肿瘤进展,对整体生存的影响不佳。介绍新颖的高度创新性个性化方法将具有巨大的
摘要。背景/目标:甲状腺塑性甲状腺癌(ATC)的预后很差,目前尚无既定治疗方法来改善其结果。我们先前报道说,Zeste同源2(EZH2)的增强子在ATC中高度表达,并且可能是治疗靶标。但是,EZH2对ATC增长的影响目前尚不清楚。材料和方法:我们研究了EZH2抑制剂(DZNEP)对四种ATC细胞系(8305C,KTA1,TTA1和TTA2)的影响。我们对所有ATC细胞系进行了基因面板分析,以识别细胞系之间DZNEP敏感性的差异。为了研究DZNEP对分化恢复的影响,我们评估了使用PCR进行DZNEP处理之前和之后甲状腺分化标记(TDM)的变化。结果:EZH2在所有ATC细胞系中均表示。在所有ATC细胞系中都检测到DZNEP的细胞还原作用,并且在KTA1细胞中最强,然后是TTA2细胞。TTA1和8305C细胞系显示了弱细胞减少作用,具有TP53突变。在任何ATC细胞系中均未观察到TDM的变化。结论:EZH2抑制剂DZNEP对ATC细胞的生长产生了抑制作用
摘要:由于缺乏有效的治疗,高级神经胶质瘤(HGG)患者的预后很沮丧。为了改变HGG患者的命运并减少了当前与治疗相关的副作用,过去几年的治疗重点已转变为免疫疗法,例如基于嵌合抗原受体(CAR)的治疗。基于汽车的治疗的最新发展显示成人神经胶质瘤患者的有希望的结果,而针对HGG的小儿患者进行了首次临床试验。但是,小儿HGG(PHGG)及其成年对应物之间存在显着差异,包括肿瘤免疫微环境(TIME)的组成,这极大地影响了汽车治疗的反应性。因此,我们在这里提供了PHGG实体中基于汽车的治疗靶标的系统概述,重点是临床试验和临床前研究,并将其与成人神经胶质瘤进行了比较。我们得出的结论是,目标表达,时间和汽车治疗相关的毒性在PHGG实体之间有所不同,并且与成人HGG有所不同,这表明需要在PHGG中采用更量身定制的免疫治疗型汽车方法。总的来说,我们为未来开发基于汽车的治疗策略的儿科HGG患者提供了目标路线图,这些患者迫切需要新的疗法。
摘要:众所周知,多形性胶质母细胞瘤 (GBM) 的精确定位可以预测肿瘤在周围神经结构中扩散的方向。本综述的目的是通过评估 GBM 经常发生的解剖区域以及在不同大脑区域观察到的主要分子改变来揭示 GBM 的侧化。根据文献,GBM 的精确或最常见的侧化尚未确定。然而,可以说 GBM 在额叶中更常见。与 GBM 有关的束和束似乎集中在皮质脊髓束、上纵束 I、II 和 III 束、弓状束长段、额海峡束和下额枕束。考虑到胶质母细胞瘤的解剖特征及其对大脑的累及,主要累及的大脑区域分别是额叶、颞叶、顶叶和枕叶,这是合乎逻辑的。尽管右半球的肿瘤体积较大,但已确定左半球被诊断为癌症的患者的预后更差,这可能反映了一些有害改变的解剖分布,例如 TP53 突变、PTEN 缺失、EGFR 扩增和
抽象正电子发射断层扫描/计算机断层扫描(PET/CT)极大地改变了非侵入性神经胶质瘤评估的景观,为通过磁共振成像(MRI)获得的辅助见解提供了互补的见解。PET/CT扫描可以对神经胶质瘤生物学进行多方面的分析,支持从分级和差异诊断到绘制肿瘤的全部范围并计划后续治疗和评估的临床应用。具有一系列专门的放射性植物,研究人员和临床医生现在可以探测神经胶质瘤的各种生物学特征,例如葡萄糖利用,细胞增殖,氧缺乏症,氨基酸运输和反应性星形胶质细胞增多。本评论旨在提供有关多功能PET/CT放射性示例在神经胶质瘤研究和临床实践中的应用的最新更新。
摘要 儿童低级别胶质瘤 (pLGG) 是最常见的儿童脑肿瘤组。当无法进行根治性切除时,其自然病程是一种慢性疾病,肿瘤稳定期和肿瘤进展期交替出现。虽然总体存活率很高,但许多患者会经历严重的、可能终生的疾病。由于突变事件,大多数 pLGG 具有潜在的 RAS/MAPK 通路激活,导致在临床试验中使用分子靶向疗法,最近监管机构批准了 BRAF 和 MEK 抑制组合用于 BRAFV600E 突变的 pLGG。尽管活动令人鼓舞,但由于药物耐药性,治疗期间可能会发生肿瘤复发,停止治疗后可能会出现肿瘤复发,或者据报道,一些患者在停止靶向治疗后 3 个月内出现快速反弹生长。在 pLGG 中,这些再生模式的定义尚未得到很好的描述。因此,国际儿童低级别胶质瘤联盟(一个由全球医生和科学家组成的团体)成立了耐药性、反弹和复发 (R3) 工作组,以研究耐药性、反弹和复发。采用改良的德尔菲方法,针对 pLGG 的再生模式制定了基于共识的定义和建议,并特别提到了靶向治疗。
摘要:神经胶质瘤被认为是导致脑部疾病的主要脑肿瘤,难以治疗且对各种常规疗法均有耐药性。治疗神经胶质瘤最常见的方法是手术切除肿瘤,然后进行辅助化疗和放射治疗。最新的生物相容性界面已被纳入治疗方式,例如使用水凝胶靶向输送药物来治疗和管理脑神经胶质瘤。本综述阐述了多模水凝胶作为治疗载体、基因治疗、治疗策略和神经胶质瘤设备的应用。从 2019 年至 2022 年在 Google Scholar 和 Scopus 数据库中检索了科学文章,并进行了筛选以确定它们是否适合进行综述。本综述总结了适合该研究的 20 篇文章。这些研究表明,水凝胶的尺寸范围为 28 纳米至 500 纳米。 20 篇文章中有 16 篇还介绍了水凝胶的术后应用,13 篇文章介绍了水凝胶的 3D 培养和其他结构表现。水凝胶的优点包括快速配制以充分填充不规则损伤部位、溶解疏水性药物、持续减缓药物释放、提供 3D 细胞生长环境、提高疗效、可溶性生物分子的靶向性、提高患者依从性以及减少副作用。水凝胶的缺点包括难以实时监测、基因操作、繁琐的同步释放成分以及缺乏安全数据。水凝胶的前景可能包括开发电子水凝胶传感器,可用于增强对使用患者特定病理特征的精确靶向模式的指导。这项技术有可能彻底改变精准医疗方法,有助于早期发现和管理实体脑肿瘤。
这项全面的评论探讨了人工智能(AI)对医院管理的变革性影响,研究其应用,挑战和未来趋势。将AI纳入行政职能,临床操作和患者参与度具有巨大的希望,以提高效率,优化资源分配和革新患者护理。但是,这种演变伴随着需要仔细导航的道德,法律和运营考虑因素。评论强调了关键发现,强调了对医院管理的未来的影响。它要求采取一种积极主动的方法,敦促利益相关者对教育进行投资,优先考虑道德准则,促进合作,倡导周到的监管,并接受创新文化。医疗保健行业可以通过集体行动成功地导航这个变革性时代,以确保AI有助于更有效,更容易获得的以患者为中心的医疗保健。
摘要:神经胶质瘤的侵袭性和对治疗的抵抗性使其成为肿瘤学的一个主要问题。尽管医学科学取得了重大进步,但神经胶质瘤的预后仍然不容乐观,手术、放疗 (RT) 和化疗 (CT) 等传统治疗方法经常被证明无效。在发现神经胶质瘤干细胞 (GSC) 后,将神经胶质瘤视为均质肿块的传统观点发生了变化。GSC 对肿瘤生长、治疗抵抗和复发至关重要。这些细胞独特的分化和自我更新能力正在改变我们对神经胶质瘤生物学的认识。本系统文献综述旨在揭示与 GSC 相关的神经胶质瘤进展的分子驱动机制。系统综述遵循 PRISMA 指南,在 PubMed、Ovid MED-LINE 和 Ovid EMBASE 上进行了彻底的文献检索。第一次文献检索于 2024 年 3 月 1 日进行,搜索更新于 2024 年 5 月 15 日。搜索使用 MeSH 术语和布尔运算符,重点关注与 GCS 介导的胶质瘤进展相关的分子机制。纳入标准包括英文研究、临床前研究和临床试验。最初确定了 957 篇论文,其中 65 篇从 2005 年到 2024 年的研究最终被纳入审查。主要 GSC 模型分布按频率降序排列:U87:20 项研究(32.0%);U251:13 项研究(20.0%);A172:4 项研究(6.2%);和 T98G:2 项研究(3.17%)。从最频繁到最不频繁,主要 GSC 通路的分布如下:Notch:8 项研究(12.3%);STAT3:6 项研究(9.2%); Wnt/β-catenin:6 项研究(9.2%);HIF:5 项研究(7.7%);PI3K/AKT:4 项研究(6.2%)。分子效应的分布(从最常见到最不常见)如下:抑制分化:22 项研究(33.8%);增加增殖:18 项研究(27.7%);增强侵袭能力:15 项研究(23.1%);增加自我更新:5 项研究(7.7%);抑制细胞凋亡:3 项研究(4.6%)。这项研究突出了 GSC 异质性和胶质母细胞瘤微环境中的动态相互作用,强调需要采取量身定制的方法。影响 GSC 行为的一些关键通路是 JAK/STAT3、PI3K/AKT、Wnt/β-catenin 和 Notch。治疗可以针对这些通路。这项研究敦促进行更多研究以填补 GSC 生物学方面的知识空白,并将研究结果转化为有用的治疗方法,以改善 GBM 患者的治疗结果。
神经胶质瘤是中枢神经系统(CNS)最常见的恶性肿瘤,其特征是高侵袭性和高复发率。目前,神经胶质瘤的主要治疗方法包括手术切除,替莫唑胺化疗和放疗。然而,主动标准化治疗后神经胶质瘤患者的预后仍然很差,尤其是对于胶质母细胞瘤(GBM);中位生存期仍然只有14.6个月,5年生存率仅为4-5%。当前的神经胶质瘤治疗中的挑战包括难以完成手术切除,血液 - 脑屏障(BBB)药物渗透性,治疗性耐药性和肿瘤特异性靶向的难度。近年来,纳米技术的快速发展为诊断和治疗神经胶质瘤提供了新的方向。纳米颗粒(NP)的特征是出色的表面可调性,精确的靶向,出色的生物相容性和高安全性。此外,NP可用于基因疗法,光动力疗法和抗血管生成疗法,并可以与生物材料进行热疗法结合使用。近几十年来,已经用各种功能性NP进行了诊断和治疗神经胶质瘤的突破,而NP有望成为胶质瘤诊断和治疗的新策略。在本文中,我们回顾了治疗神经胶质瘤的主要障碍,并讨论了最新的纳米技术在诊断和治疗神经胶质瘤中的潜力和挑战。
