组蛋白脱乙酰基酶(HDAC)作为重要的表观遗传调节酶家族,与癌的发作和进展有关。因此,HDAC抑制已被证明是逆转与癌症相关的异常表观遗传变化的强大策略。然而,大多数发达的HDAC抑制剂(HDACIS)的非选择性概况导致出现各种副作用,从而限制了它们的临床效用。该证据为正在进行的研究旨在识别同工型选择性抑制剂提供了坚实的基础。在同工型中,HDAC1在选择性HDACIS设计的首选目标中尤其引起了人们的关注。因此,在本文中,我们开发了一个可靠的虚拟筛选过程,结合了不同的配体和基于结构的方法,以鉴定具有潜在的HDAC1抑制活性的新型基于苯甲酰胺的类似物。为此,首先根据80%的结构相似性与四个已知的基于苯甲胺基的HDAC1抑制剂,Mocetinostat,Entinostat,Entinostat,Taceadinaline和Chidamide进行了80%的结构相似性。我们包含的内部3D-QSAR模型,源自基于药效团的对准,然后被用作3D Query,以区分具有最高预测的HDAC1抑制活性的命中。所选的命中经过后续的基于结构的方法(诱导拟合对接(IFD),MM-GBSA计算和分子动力学(MD)模拟),以检索具有HDAC1活性位点结合亲和力最高的潜在化合物。总而言之,提出的计算方法可以提供此外,还考虑了选择一组富集的最佳药物样分子的硅网状特性和疼痛过滤。最后,六个排名最高的命中分子,CID_38265326,CID_56064109,CID_8136932,CID_55802151,CID_133901641和CID_18150975均可识别最佳稳定模式和绑定模式。IFD和MD结果合作证实了有希望的选定命中与HDAC1活跃位点中关键残基的相互作用。
单域抗体片段 (sdAbs) 是靶向 a 粒子治疗的理想选择,尤其是使用 211 At 时,因为它们在肿瘤中快速积累并从正常组织中清除。在这里,我们评估了这种策略的治疗潜力,使用 5F7 和 VHH_1028 — 2 个 sdAbs,它们以高亲和力结合人类表皮生长因子受体 2 型 (HER2) 的结构域 IV。方法:使用 N-琥珀酰亚胺基-3-211 At-astato-5-胍基甲基苯甲酸酯 (iso-211 At-SAGMB) 标记 HER2 特异性 sdAbs 和 HER2 无关的 VHH_2001。比较了 iso-211 At-SAGMB-5F7 和 iso-211 At-SAGMB-VHH_2001 对 HER2 表达的 BT474 乳腺癌细胞的细胞毒性。在皮下移植 BT474 异种移植瘤的小鼠中进行了三项实验,以评估单剂量 iso-211 At-SAGMB-5F7(0.7 – 3.0 MBq)、iso-211 At-SAGMB-VHH_1028(1.0 – 3.0 MBq)以及 iso-211 At-SAGMB-VHH_1028 和 iso-211 At-SAGMB-VHH_2001(1.0 MBq)的治疗效果。结果:暴露于 iso-211 At-SAGMB-5F7(D 0 5 1.313 kBq/mL)后,BT474 细胞的克隆形成存活率降低,而 iso-211 At-SAGMB-VHH_2001 无效。使用 211 At 标记的 HER2 特异性 5F7 和 VHH_1028 观察到剂量依赖性肿瘤生长抑制,但使用 HER2 无关的 VHH_2001 则未观察到。在 3.0 MBq 剂量下,使用 iso-211 At-SAGMB-5F7 治疗的 4 只小鼠中有 3 只出现肿瘤完全消退,使用 iso-211 At-SAGMB-VHH_1028 治疗的 11 只小鼠中有 8 只出现肿瘤完全消退;中位生存期分别延长了 495% 和 414%。结论:将快速内化、高亲和力的 HER2 靶向 sdAb 与 iso-211 At-SAGMB 残留修复剂相结合,是一种针对 HER2 表达癌症的靶向 α 粒子治疗的有前途的策略。
背景/AIM:胶质层是2型糖尿病(T2D)中最常见的口服杂种糖疗法之一。最近报道了胶质苷的其他有益药理特性,包括免疫调节性和抗凝作用,提示其在治疗1型糖尿病(T1D)中的潜在应用。然而,在口服管理后,胶质层被证明具有较差且可变的吸收,将研究引导到针对T1D的新型药物递送系统的开发。由于胆汁酸以前已经证明了对微胶囊的稳定和释放的影响,因此它们用于制备胶质辉石的微胶囊可能会改善胶质片释放,吸收和抗糖尿病效应。该研究的目的是评估健康大鼠中藻酸藻酰胺基藻酸酯的微胶囊的药物吸收谱和降血糖作用。Methods: Thirty healthy Wistar rats with confirmed normal glucose blood con- centration were allocated into five groups and administered with a single dose of either vehicle microcapsules, gliclazide in suspension, gliclazide microcapsules, gliclazide in suspension together with cholic acid or microencapsulated gliclazide in combination with cholic acid.在各自的胶质层剂量之后,在接下来的10小时内采样血液,并测量血糖水平和胶质塑料水平。结果:该分析表明,与任何其他研究的药物形式相比,与其他研究的药物形式相比,在口腔施用后,其口服悬浮剂作为悬浮液作为悬浮液(P <0.01)的最深刻的降低血糖效应所产生的最高胶质激素吸收的不同胶质激素吸收的影响改变了。关心:在进行新型抗糖尿病药物的杀菌剂制剂的药代动力学表征时,选择适当的研究模型并考虑胆汁代谢激活对其降血糖效应的可能作用至关重要。
几丁质是一种可广泛可用的多糖,可生物降解,在大多数溶剂中不溶于且具有低抗原性能。几丁质纳米颗粒,例如纳米晶须和纳米纤维(CHNF)可以形成稳定且均匀的分散体。纳米颗粒悬浮液显示了粗几丁质的特性以及高纵横比,高表面积,低密度和羟基,N-乙酰基组以及其表面上残留的胺基的性质。本综述描述了纳米素制剂技术和食物应用。特别是,研究了纳米磷酸在调节脂溶性生物利用度和盐度的调节中的作用。掺入CHNF中的脂溶性维生素可用于消化。 ,透明质酸和癌症处理药物可以通过皮肤通过几壳蛋白纳米凝胶传递到靶向位置。 有趣的是,CHNF通过与味觉受体的离子结合增强了咸感感知。 在pH <7时,氨基组螯合氯化物,从而释放钠与盐受体相互作用。 这种机制可以允许食物配方的盐分减少。 此外,纳米胆料素表达表面活性剂特性并增强复合食品包装(淀粉 - 基于明胶的,明胶纳米复合材料,纳米纤维素/纳米胆素膜涂层F-SIO 2 2悬浮液)。 本文可以帮助更好地理解纳米素作为功能成分的机会。掺入CHNF中的脂溶性维生素可用于消化。,透明质酸和癌症处理药物可以通过皮肤通过几壳蛋白纳米凝胶传递到靶向位置。有趣的是,CHNF通过与味觉受体的离子结合增强了咸感感知。在pH <7时,氨基组螯合氯化物,从而释放钠与盐受体相互作用。这种机制可以允许食物配方的盐分减少。此外,纳米胆料素表达表面活性剂特性并增强复合食品包装(淀粉 - 基于明胶的,明胶纳米复合材料,纳米纤维素/纳米胆素膜涂层F-SIO 2 2悬浮液)。本文可以帮助更好地理解纳米素作为功能成分的机会。
浓度。[1]在过去几年中,多种材料,例如多孔二氧化硅,金属有机框架(MOF),沸石,多孔碳,共价有机/三嗪框架(COFS/CTFS)和多孔有机聚合物(POPS),以供碳捕获应用。[1b,2]在这些材料中,化学膜起着重要的作用,因为它们对CO 2的亲和力提高,这对于在稀释应用中应用CCM是必不可少的。[1A,3]理想情况下,CCMS应结合高容量,高亲和力但容易再生,高选择性和对杂质的耐受性,例如水和其他痕量气体。[1A,4]但是,尚未找到满足所有这些标准的材料。模型系统可用于确定最重要的设计原理,以提高未来CCM的性能。对于下一代化学吸附剂设计设计的一个关键挑战是在吸附热ΔHADS↔再生能量和选择性之间找到理想的平衡。[1a]到目前为止,存在两种主要策略来计算CCM的这些指标:主动捕获中心的优化和多孔结构的优化。在此,我们提出了一种新策略:将附近的分子环境更改为吸附中心,以吸附CO 2吸附。我们的假设是,可以通过引入直接邻域中存在的不同官能团来调制活动捕获组(例如胺,NH2)与CO 2的相互作用。胺功能化材料是广泛研究的CCMS类。Wang等。Wang等。文献中存在最初的提示,实际上,纳米环境在化学CO 2吸附过程中起着重要作用。[5]机械研究表明,邻近组(NGS),例如表面上的相邻胺基,例如影响CO 2的吸附。[5a,c,6]据报道,硅胶材料中存在的硅烷醇基团(SIOH)也具有作用。[5a,6a – d]通过IR和NMR光谱(例如最常见的氨基甲酸酯[5a,c,6],以及尿素[6b,e]或碳酸氢盐种类,已经鉴定出不同的表面结合物质。[6e,f]到目前为止,只有很少的研究集中在相邻群体的影响下。研究了与相邻OH/NH 2种的共存的吡啶氮种类的影响,发现这些相邻群体在增强捕获性能
根据形态和来源,纳米级纤维素(即纳米纤维素)可分为三类,包括纤维素纳米晶体(CNC)、纤维素纳米纤维(CNF)和细菌纳米纤维素(BNC)。前两类来自植物(Yadav et al., 2021),而细菌纳米纤维素来自微生物(Ullah et al., 2017)。此外,纳米纤维素还可从藻类(Ruan et al., 2018)和动物(Bacakova et al., 2019)中获得,也可以通过无细胞酶系统合成(Kim et al., 2019)。目前,纳米纤维素的研究主要从三个方面进行:生产、品质提升和功能化,以用于各种生物技术应用。例如,植物纤维素含有木质素、半纤维素和矿物质,应将其去除以获得高纯度和质量的纳米纤维素(Ul-Islam 等,2019a)。为此,人们已开展努力来开发绿色方法,以尽量减少或避免使用木质纤维素材料水解所需的有毒化学品。另一方面,细菌生产 BNC 的产量和生产率低,生产成本高。因此,已采用菌株改良、共培养、开发工程菌株和先进反应器等多种策略来提高 BNC 的产量和生产率(Islam 等,2017;Sajadi 等,2019;Moradi 等,2021)。同时,不同的农业工业废弃物已被用作细菌生产BNC的碳源(Velásquez-Riaño和Bojacá,2017年;Ul-Islam等,2020年;Zhou等,2021年)。同样,虽然不同类型的纳米纤维素具有令人印象深刻的形态和物理化学特性并且无毒,但它们不具备材料的一些理想特性,如粘合位点、抗菌和抗氧化活性、电磁特性和催化活性,因此需要进一步改性(Picheth等,2017年;Vilela等,2019年)。由于相似的表面化学性质,所有类型的纳米纤维素都通过相同的化学策略进行改性,如酯化(Spinella 等人,2016 年)、醚化(De La Motte 等人,2011 年)、酰胺化(Kim 等人,2015 年)和氧化(Khattak 等人,2021 年),以及通过氢键、静电相互作用、亲水/疏水相互作用和 π - π 堆积进行物理改性,其中纤维素的游离 OH 基团直接与富电子的胺基、氧原子和羧基相互作用并形成氢键(Ullah 等人,2019 年)。由于不同类型的纳米纤维素具有独特的表面化学性质、多样性和令人印象深刻的特性,它们可应用于生物医学(Wang 等人,2021 年)、环境(Shoukat 等人,2019 年)、纺织(Felgueiras 等人,2021 年)、制药(Raghav 等人,2021 年)、能源(Zhang 等人,2020 年)、增材制造(Fourmann 等人,2021 年)、化妆品(Bianchet 等人,
主要产品:涂料和油墨添加剂:Texanol™、Optifilm™、酮、酯、乙二醇醚、醇溶剂、EastaPure™、纤维素、聚酯、聚烯烃基聚合物和 Tetrashield™ 保护性树脂体系胶粘剂树脂:碳氢化合物树脂(Piccotac™、Regalite™、Eastotac™、Eastoflex™、Aerafin™)轮胎添加剂:Crystex™ 不溶性硫磺、Santoflex™ 抗降解剂和 Impera™ 高性能树脂护理化学品:烷基胺衍生物、有机酸及衍生物、纤维素酯、Banguard™ 杀菌剂特种液体:Eastman Therminol™ 传热流体、Skydrol™、涡轮机油、SkyKleen™、Marlotherm™动物营养:有机酸及衍生物、有机酸基溶液、氯化胆碱、Eastman Enhanz™ 主要市场与应用: 运输:橡胶轮胎制造中使用的不溶性硫、抗降解剂和高性能树脂、OEM 和修补涂料中使用的聚合物和溶剂、航空液体 消耗品:卫生和包装胶粘剂中使用的树脂、涂料添加剂以及图形艺术和油墨中使用的聚合物 建筑:建筑涂料中使用的溶剂、建筑胶粘剂和室内地板用树脂 食品、饲料与农业:土壤熏蒸剂、动物饲料的肠道健康、防腐、杀菌剂和植物生长调节剂 工业化学品与加工:化学过程和可再生能源的传热流体 能源、燃料与水:水处理用的烷基胺衍生物 消费/医疗耐用品:涂料、木材和工业应用中使用的聚合物和溶剂 个人护理/健康与保健:个人护理应用和水处理中使用的胺基中间体 主要原材料:醇、烷基胺、氨、苯胺、甲基苯乙烯、苯、C9 树脂油、CS2 烧碱、环氧乙烷、甲酸、松香、重质燃料油、甲基异丁基酮、环烷工艺油、新多元醇酯、硝基苯、戊二烯、磷、丙烷、丙烯、硫、苯乙烯、木浆 主要竞争对手: 涂料和油墨 添加剂:巴斯夫欧洲公司、陶氏公司、Oxea、塞拉尼斯公司 粘合剂树脂:埃克森美孚公司、可隆工业公司、赢创工业公司 轮胎添加剂:东方炭素化学株式会社、四国化成株式会社 护理化学品:巴斯夫欧洲公司、陶氏公司、亨斯迈公司、科迪华公司、Agro-Kanesho 株式会社、拜耳 特种液体:陶氏公司、埃克森美孚公司 动物营养:巴斯夫欧洲公司、Perstorp Holding AB、鲁西化工集团、肥城酸性化学品
AML是成年人中最常见的急性白血病,并且与生存率差有关,尤其是在60岁以上的患者中,其中只有5-15%的治愈年龄。此外,无法忍受强化化疗的老年患者的总体生存率仅为5-10个月。因此,需要采用新颖的治疗方法来提高AML的治愈率。有趣的是,表现出脱水的GLUT1介导的葡萄糖摄取会损害AML细胞的增殖,并移植Glut1骨中的鼠AML细胞减弱了小鼠AML的发育,这表明Glut1在AML中起重要作用。3因此,靶向GLUT1可以通过过度抗Ara-C耐药性来反映AML中新型的治疗脆弱性。但是,仍然没有针对Glut的临床上可用的药物,这可能部分是由于缺乏适当的体外药物筛查系统。在这里,我们提出了抑制葡萄糖转运蛋白并使AML细胞化学疗法的详细结构和功能分析。glut1是一种整体膜蛋白,由12个跨膜螺旋和一个细胞内结构域组成,它根据浓度梯度转运葡萄糖(图1A)。4,由于缺乏易于访问的读数,测量传输未充电底物的glut1(例如GLUT1)的活性是具有挑战性的。但是,我们已经开发了一个系统,通过该系统将纯化的葡萄糖转运蛋白在体外重新确定为巨型囊泡,并使用荧光显微镜报告其转移活性。并行,将相同的MD协议应用于5这使得通过将纯化的转运蛋白嵌入脂质双层中,模仿哺乳动物细胞的大小和弯曲,可以测量葡萄糖的摄取而不会受到其他蛋白质的任何干扰。应用这种方法,对众所周知的GLUT1抑制剂WZB-117和Cytochalasin b(Cb)验证并分析了PGL1抑制剂PGL1抑制剂PGL1,PGL-14和PGL-14和PGL-27(图1B)。对于PGL-13和PGL-14,检测到葡萄糖吸收的明显减少,但对于PGL-27,葡萄糖的吸收量明显减少(图1C)。为了合理化这些结果,进行了分子建模研究,包括对接,分子动力学(MD)模拟和配体 - 蛋白结合能评估。先前已经在与CB和苯丙氨酸酰胺基抑制剂7中确定了GLUT1的结构,该抑制剂7显示与中央底物结合位点结合(图1A)。评估PGL-13和PGL-14是否也在底物结合位点相互作用,PGL-14在内向开放的构象中被停靠到GLUT1位点。7可以将扩展坞溶液聚集成三个结合姿势,对于每个群集,使用最佳估计结合能的对接溶液被选为代表性的电势结合模式。为了评估预测结合模式的可靠性,对三种配体 - 蛋白质复合物(复合物1-3,在线补充图S1A-C)进行了MD模拟。
金属离子不仅在生物学中发挥关键作用,还广泛用于诊断和治疗剂。临床应用的例子包括用作 MRI 造影剂的钆配合物、用作成像剂的锝-99m 配合物和铂基抗癌剂药物。超过 50% 的癌症治疗使用 DNA 靶向铂类药物,无论是单独使用还是联合治疗。尽管它们在临床上取得了巨大的成功,但它们也存在一些缺点,包括因剂量相关毒性和耐药性出现而产生的严重副作用。这些局限性激发了人们对铂和非铂金属配合物的研究,其作用方式与铂类药物不同。因此,人们设计和开发了存在于元素周期表中的金属化合物,用于治疗从癌症(例如 Ru、Gd、Ti、Ge、V 和 Ga)到糖尿病(V 和 Cr)再到传染病(Ag、Cu 和 Ru)等一系列疾病。每种金属都有独特的特性,例如氧化还原电位和配体交换动力学。因此,金属中心的选择和配体的设计对新药物的治疗效果和作用机制起着至关重要的作用( Hanif and Hartinger,2018 )。本期特刊“无机药物设计与合成的新策略”汇集了六篇关于金属药物发现和开发领域最新进展的文章。半夹心金属芳烃支架具有可操纵的特性,可以优化分子的类药特性。这类化合物近年来引起了人们的极大兴趣。Mokesch 等人报道了一系列新型的 2-苯基苯并噻唑衍生物半夹心 Ru II 和 Os II 配合物。Ru II 和 Os II 配合物在低 µ M 范围内表现出抗癌活性。用作配体的 2-苯基苯并噻唑衍生物的效力至少比金属环低一个数量级。本文报道了金属环的水稳定性、与小生物分子的相互作用、细胞积累以及诱导细胞凋亡/坏死。代表性 Ru II 复合物的荧光显微镜显示其在溶酶体和其他亚细胞区室中积累量很高。分子靶向药物在改善抗癌剂的不良副作用和毒性方面表现出巨大的潜力。靶向药物识别并结合癌细胞表面与健康细胞相比过度表达的受体。在这方面,已广泛探索在各种肿瘤中过度表达的表皮生长因子受体 (EGFR)。Li 等人用抑制 EGFR 的 4-苯胺基喹唑啉衍生物对 Pt II 三联吡啶复合物进行了功能化。抗癌 Pt II 化合物表现出多种 DNA 相互作用模式,是强效的 EGFR 抑制剂。这些结果对于未来设计多靶向药物非常令人鼓舞。
7-氨基-3-氯甲基-3-头孢烯-4-羧酸对甲氧基苄酯盐酸盐 (ACLE) 购自 AK Scientific (加利福尼亚州联合城)。4-硝基苯硫酚 (NBT) 和 3-马来酰亚胺基丙酸购自 TCI Chemicals (日本东京)。头孢噻吩购自 P212121, LLC (马萨诸塞州波士顿)。氘代二甲基亚砜 (DMSO-d 6 ) 购自 Cambridge Isotope Laboratories (马萨诸塞州安多弗)。三乙胺 (TEA)、4-甲基吗啉 (NMM)、无水二氯甲烷 (DCM)、无水二甲基甲酰胺 (DMF)、己烷、乙醚、乙酸乙酯、薄层色谱法 (TLC) 硅胶 60 玻璃板、无水磷酸氢二钠、无水磷酸二氢钠、CENTA、二甲基亚砜 (DMSO)、三氟乙酸 (TFA)、苯甲醚、硫醇官能化的 4 臂聚乙二醇 (4 臂-PEG-SH; 20 kDa)、来自蜡样芽孢杆菌的 β L (β L-BC; cat.# P0389, 28 kDa, 2817.8 U/mg 蛋白, 4.72% 蛋白)、来自铜绿假单胞菌的 β L (β L-PA; cat.# L6170, 30 kDa, 1080 U/mg 蛋白,1% 蛋白)、来自阴沟肠杆菌的 β L(β L-EC;目录号 P4524,20-26 kDa,0.37 U/mg 蛋白,56.45% 蛋白)、来自溶组织梭菌的胶原酶、磷酸盐缓冲盐水 (PBS)、硝酸钠、阳离子调整的 M¨uller-Hinton 肉汤 (CMHB)、α-氰基-4-羟基肉桂酸、1-[双 (二甲氨基) 亚甲基]-1H-1,2,3-三唑并[4,5-b]吡啶 3-氧化物六氟磷酸盐 (HATU)、N,N-二异丙基乙胺 (DIPEA) 和盐酸 (HCl) 均购自 Millipore Sigma(密苏里州圣路易斯)。甲醇、硅胶、胰蛋白酶大豆肉汤 (TSB) 和 SYLGARD 184 硅胶弹性体试剂盒购自 Thermo Fisher Scientific (马萨诸塞州沃尔瑟姆)。甲氧基聚乙二醇硫醇 (mPEG-硫醇;1.7 kDa) 购自 Laysan Bio, Inc. (阿拉巴马州阿拉伯)。金黄色葡萄球菌菌株 25923 和 29213、耐甲氧西林金黄色葡萄球菌 (MRSA) MW2、蜡样芽孢杆菌 13061、大肠杆菌 25922 和阴沟肠杆菌 13047 购自 ATCC (弗吉尼亚州马纳萨斯)。铜绿假单胞菌 PA01 由沃尔特里德陆军研究所 (马里兰州银泉) 慷慨捐赠。大肠杆菌 DH5-α 购自 Life Technologies (加利福尼亚州卡尔斯巴德)。双马来酰亚胺-PEG 3(mal-PEG-mal,494.5 Da)购自 BroadPharm(加利福尼亚州圣地亚哥)。Repligen Biotech 纤维素酯 500-1000 Da 分子量截留 (MWCO) 透析管购自 Spectrum Labs Inc.(加利福尼亚州兰乔多明格斯)。超高纯度氮气(99.999%)购自 Airgas(罗德岛州沃里克)。所有实验均采用超纯去离子水(18.2 MΩ·cm,Millipore Sigma,马萨诸塞州比勒里卡)。本研究中提到的室温 (RT) 约为 23 ◦ C。