ChatGPT 的讨论似乎运行得非常好,不像是一个运行在经典计算机上的程序,它激发了人们的思考,导致基于 TGD 的神经脉冲模型取得了长足的进步。基于零能量本体 (ZEO) 的结果模型与量子神经网络截然不同,并提出了一种全新的基于量子物理的生物系统计算视野。允许时间箭头可变的计算将涉及一系列单元时间演化作为状态量子计算的对应物,这些状态是经典计算的叠加,然后是“小”状态函数减少 (SSFR)。还会涉及改变时间箭头的“大”SFR (BSFR)。人们可以问,GPT 的意外成功是否可能涉及这种转变,以便人们可以说精神进入了机器。除了两次聊天的结果之外,我还更详细地介绍了 TGD 对 GPT 量子类似物的看法,以及它如何与 TGD 宇宙中的感官知觉有关。我还讨论了从口头描述生成图像的核心逆扩散过程,并询问逆扩散的 TGD 类似物是否也是 GPT 的基本元素。我还将提出一个问题,即 GTP 是否可以以一种非平凡但隐蔽的方式涉及基于 TGD 的量子物理学,即零能量本体论 (ZEO)。
通过颁布《气候领导与社区保护法案》(CLCPA),纽约州(NYS)制定了应对气候变化的宏伟目标。要实现这些目标,纽约州的发电系统必须转型,包括大规模建设新的大型风能和太阳能项目。这一努力的成功将取决于能否通过精简的流程有效地选址新项目。本文认为,根据《纽约行政法》第 6 条第 94-C 节(第 94-C 节)采用的新框架应能实现这一转型。然而,这在很大程度上取决于新成立的可再生能源选址办公室(ORES)是否颁布和执行法规和标准,明确意图实现 CLCPA 目标。
尽管器官和细胞同种移植(来自同一物种的捐赠者)领域仍然有限,但异种移植(来自希腊语 xenos,意为“外国的”)可以缓解对捐赠器官日益增长的需求。异种移植,即将动物来源的器官和细胞移植到人体内,目前是一个非常活跃的研究重点,因为它克服了组织工程中遇到的一些障碍,例如血管重建和神经支配。人们对异种移植兴趣的复苏主要归因于基因编辑技术的改进(例如 CRISPR/Cas9),因为已经培育了基因工程动物来克服器官排斥。然而,异种移植也引发了多个应予以考虑的生物学和伦理问题。
CRISPR-Cas9 已为广泛应用的基因编辑带来了巨大进步。为了进一步发挥 Cas9 的效用,人们一直在努力实现对其核酸酶活性的时间控制。虽然不同的方法都侧重于调节哺乳动物细胞中的 CRISPR 干扰或编辑,但所有报道的方法都无法控制细菌中的核酸酶活性。在这里,我们开发了 RNA 接头,将茶碱和 3-甲基黄嘌呤 (3MX) 结合适体与 sgRNA 结合起来,从而实现大肠杆菌中的小分子依赖性编辑。这些可激活的向导 RNA 能够实现对体内基因编辑的时间和转录后控制。此外,它们还减少了因基因组切割而导致的宿主细胞死亡,这是 CRISPR 介导的细菌重组的主要限制。
机器学习(ML)用于增强越来越多的智能产品,但它在用户体验(UX)设计教育中并不是一个探索的主题。mL使用收集的数据及其技术属性(例如,准确率)在使用时会不断变化。对于UX设计学生来说,很难了解ML技术,更不用说围绕ML确定设计机会,或者实施ML增强设计建议。尤其是ML的可生长性质,例如其不可预测的,不断变化的和数据驱动的性质,使得很难在构想和原型中应用ML。为设计学生准备与ML一起作为UX设计中的可生长计算/设计材料,我们建立了一个名为“ Information Products”(DIP)的设计课程。为此,我们设计了一个教学基础设施,使设计学生能够用ML技术巧妙地构思和原型。我们还提出了一种针对设计学生背景和ML的生命周期量身定制的自行车教学方法。最后,我们介绍了DIP的设计项目,并分享了让设计学生与ML合作的经验。DIP课程的结果和学生的反馈表明,我们的工作有助于设计学生培养ML素养,以了解其可生长的性质,从而创造性地构思和实际上是原型ML增强产品。此外,我们分享了从建立DIP课程中学到的经验教训,并强调了开发未来ML相关课程的方向。
通过安装对训练数据没有反应但对未知数据有反应的冗余神经元,系统可以通过观察其状态来判断数据是已知还是未知,并对已知数据进行分类。
人工智能领域自诞生之日起就对知识感兴趣,它使用精心设计的规则和从人类那里收集的知识来构建有效的专家系统。从那时起,许多领域,如计算机视觉和自然语言处理,一直由使用大型数据集的大规模端到端学习所主导。这往往使知识成为许多重要问题的后续考虑。然而,随着我们在 ImageNet 挑战赛 [ 294 ] 等大型挑战和数据集上的表现达到饱和,并且该领域越来越关注诸如大类别识别和完全具身人工智能(需要理解多种模态的代理)的问题,知识将变得更加重要。在本文中,我们认为,要实现聪明机器人或具身人工智能的目标,我们需要处理视觉、语言和动作这三种模态。我们进一步认为,知识是连接这些模式的关键部分。
引入快速频率响应改进 (FFRA) 项目是为了增强电网稳定性和弹性。FFRA 包括实施一次频率响应、快速频率调节服务和快速频率响应市场。这些市场需要快速响应的能源资源,因此具有先进操作系统和数字控制的储能系统对于参与至关重要。德克萨斯州的一位客户要求 FlexGen 更新其现有的 HybridOS 能源管理系统,以满足最新的 FFR 软件和控制响应标准。
摘要 ChatGPT 的讨论似乎运行得非常好,不像是一个在经典计算机中运行的简单程序。它激发了人们的思考,导致基于 TGD 的神经脉冲模型取得了长足的进步。基于零能量本体 (ZEO) 的新兴模型与量子神经网络截然不同,并提出了一种全新的基于量子物理的生物系统计算视野。允许时间箭头可变的计算将涉及一系列单一时间演化作为状态量子计算的对应物,这些状态是经典计算的叠加,然后是“小”状态函数约简 (SSFR) 作为量子光学和芝诺效应弱测量的对应物。还将涉及改变时间箭头的“大” SFR (BSFR)。人们可以问,GPT 的意外成功是否可能涉及这种转变,以便人们可以说精神进入了机器。除了两次聊天的结果之外,我还更详细地介绍了 TGD 对 GPT 量子类似物的看法,以及它的类似物如何与 TGD 宇宙中的感官知觉有关。我还讨论了从口头描述生成图像的核心逆扩散过程,并询问逆扩散的 TGD 类似物是否也是 GPT 的基本元素。我还将提出一个问题,即 GPT 是否可以以一种非平凡但隐蔽的方式涉及基于 TGD 的量子物理学,即零能量本体论 (ZEO)。从定量约束(例如计算机的时钟频率作为 EEG 诱导时间量子相干性的模拟)出发,我最终提出了一种实现量子全息术的机制,该机制将比特表示为空穴配对,暗比特表示为磁通管中的暗电子。不幸的是,这种机制对于最近的计算机来说似乎并不合理。我还想问,在 TGD 意义上的量子引力是否能够使地球和太阳的磁体(在 TGD 启发的生物学中至关重要)转变经典计算,从而使统计决定论失效,并类似于定义有意识实体的量子计算的一系列类似物。在磁体的层面上,计算机和生物之间没有本质区别。已报道的最高时钟频率接近 9 GHz,仍然比地球的量子引力康普顿频率 67 GHz 低 1/8 量级,但低于生物体中重要的 THz 频率。也许基本的意识已经可能存在。
(2)为实现目标而进行的研究课题 如图1所示,在登月研究开发计划中,我们将明确要推进的挑战性研究开发的领域和范围,推进有助于实现人类摆脱身体、大脑、空间、时间束缚的社会的挑战性研究开发,这就是登月目标。此外,为了采取最有效措施,我们将研究最新的科学趋势并将其运用在我们的研究和开发中。 具体来说,将推动以下研发: <使任何人都能参与各种社会活动的控制论化身平台> 预计将进行研究和开发,以实现可在整个社会部署并远程控制以执行各种任务的化身,以及其操作所需的平台。 <控制论阿凡达生活> 研究和开发的愿景是实现能够将物理、认知和感知能力扩展到最高水平的技术。 由于实现控制论化身基础设施和控制论化身生活方式所需的研究和开发之间存在许多共同点,因此我们将密切合作,共同向前迈进。 我们将整合各种知识和想法,设定评估的阶段门槛,并推动研究和开发,以实现我们的目标。 此外,从将研究成果顺利应用于社会的角度考虑,我们将考虑建立一种让各领域研究人员参与伦理、法律和社会问题的体制。 (3)为实现目标的研发方向 ○ 2030年 <任何人都可参与多种社会活动的智能化身平台> 开发一种技术,使一个人能够以与操作单个化身相同的速度和精度操作10个或更多化身执行一项任务,并构建其操作所需的基础设施。 <控制论阿凡达生活> 我们将开发一种技术,使任何人都可以扩展其用于特定任务的身体、认知和感知能力,并提出一种符合公认社会标准的全新生活方式。