绝热捷径是加速绝热量子协议的通用方法,在量子信息处理中具有许多潜在应用。不幸的是,对于具有复杂相互作用和多个能级的系统,通过分析构建绝热捷径是一项具有挑战性的任务。这通常通过假设理想化的汉密尔顿量来克服[例如,仅保留有限的能级子集,并进行旋转波近似(RWA)]。在这里,我们开发了一种分析方法,可以让人们超越这些限制。我们的方法是通用的,可以分析得出的脉冲形状可以纠正非绝热误差和非 RWA 误差。我们还表明,与传统的非绝热协议相比,我们的方法可以产生需要更小驱动功率的脉冲。我们详细展示了如何利用我们的想法在现实的超导通量子比特中分析设计高保真单量子比特“三脚架”门。
绝热捷径 (STA) 是一种加速绝热量子协议的通用方法,在量子信息处理中具有许多潜在应用。不幸的是,为具有复杂相互作用和多个能级的系统解析地构建 STA 是一项艰巨的任务。这通常通过假设理想化的汉密尔顿量(例如,仅保留有限的能级子集,并进行旋转波近似 (RWA))来克服。在这里,我们开发了一种解析方法,可以让人们超越这些限制。我们的方法是通用的,可以得到解析得出的脉冲形状,可以纠正非绝热误差和非 RWA 误差。我们还表明,与传统的非绝热协议相比,我们的方法可以产生需要更小驱动功率的脉冲。我们详细展示了如何使用我们的想法在现实的超导通量子比特中解析地设计高保真单量子比特“三脚架”门。
摘要:研究了采用低热梯度提拉技术(LTG Cz)生长的 Eu 3 + 掺杂 Bi 12 GeO 20(BGO)硅铅矿块状晶体的光谱特性。测量了室温(300 K)和 10 K 下的吸收光谱和发射特性。观察到由 Eu 3 + 离子直接激发和由 Bi 3 + 和 Eu 3 + 离子之间的能量转移引起的紫外激发下的发光。研究了 Eu 3 +:BGO 掺杂基质中 Bi 3 + → Eu 3 + 的能量转移机制。基于 Judd-Ofelt 形式计算了 Ω λ 参数和辐射寿命。基于获得的实验结果,还确定了分支比和电偶极跃迁概率。已观察到 Eu 3 + 的 5 D 0,1,2 能级发出的发光,其中 5 D 0 能级的发光最强。观察到的最强发光带对应于 578.7 nm 处的 5 D 0 → 7 F 0 跃迁。研究了理论上被禁止的 5 D 0 → 7 F 0 发光强烈存在的原因。
令人吃惊的是,可以从量子系统中获得的能量并不由系统的能量决定。这一违反直觉事实的物理来源是,开尔文和普朗克提出的热力学第二定律禁止从热平衡态循环提取功 [4]。因此,热状态通常被称为被动 [5]。因此,在循环(幺正)过程中可以提取的最大功由其平均能量的“非被动”部分决定。这个量定义为状态平均能量与相应被动状态之间的差,被命名为 ergotropy(来自“ergo”表示功和“trope”表示变换),类似于熵这个词 [6]。在没有相干性的系统中,非相干性 ergotropy 仅取决于能级的布居分布。然而,在能级之间存在相干性的情况下,出现了一种新的非经典贡献,即相干性 ergotropy [7]。值得注意的是,它是非负的,表明一致性可以增强系统的工作生产能力。
和e de。(在图中d(e)de = g(e)de中)上图表明,当我们从0D移动到3D时,能级将变得离散。量子态的数量在确定诸如半导体之类的材料的光学特性中变得很重要(即碳纳米管或量子点)。
我们用电磁捕获的原子离子晶体来表示量子比特或自旋,每个离子内的两个电子能级表现为有效量子比特或自旋 1/2 粒子。电子能级的具体选择取决于原子元素以及用于操纵和测量量子比特状态的所需控制场类型。这些量子比特状态对于执行量子信息处理的最重要特征是 (a) 能级寿命长且表现出出色的相干性,(b) 能级状态具有适当的强光学跃迁到辅助激发态,允许通过光泵浦进行量子比特初始化并通过荧光进行量子比特检测,以及 (c) 量子比特通过可外部控制和门控的相干耦合进行交互。这将原子种类限制为少数元素和量子比特/自旋态,这些元素和量子比特/自旋态要么被编码为具有射频/微波频率分裂的单个外电子原子的 S 1 / 2 超精细或塞曼基态(例如,Be + 、Mg + 、Ca + 、Sr + 、Ba + 、Cd + 、Zn + 、Hg + 、Yb + ),要么被编码为具有光频率分裂的单个或双外电子原子的基态和 D 或 F 亚稳态电子激发态(例如,Ca + 、Sr + 、Ba + 、Yb + 、B + 、Al + 、Ga + 、In + 、Hg + 、Tl + 、Lu + )。某些种类(例如,Ba + 、Lu + 、Yb + )具有足够长的 D 或 F 亚稳态激发态寿命,以在其超精细或塞曼能级中承载量子比特,并具有射频/微波分裂。
图2。(a)QD的吸收和PL光谱,(b)LMZO在溶液中的吸收光谱(c)QLED(d)的层(d),层堆栈(e)的能级比对,QLED结构(f)的横截面TEM图像(f)和性能参数。(g)中的插图显示了在12 V.
左图:提出的与O-1s和N-1s能级共振的超短X射线脉冲四波混频;中图:理论预测的二维光谱,其中下部显示了氧激发与右侧对氨基苯酚和邻氨基苯酚分子中氮激发的耦合[源自S. Mukamel]。
强场物理中许多有趣的实验都需要产生长波长激光脉冲[1-4]。最近,在 1 kHz 或更高重复率下工作的少周期、载波包络锁相、mJ 级短波红外 (SWIR,1.4-3 µ m) 激光器方面取得了进展,推动了水窗口 (282 至 533 eV) 中阿秒 X 射线源的开发[5]。利用中波红外 (MWIR,3-8 µ m) 驱动激光器已经证明了光谱截止超过 1 keV 的高次谐波产生[6]。3.5-5 µ m 大气透射窗口内的高峰值功率 (100 千兆瓦级) 脉冲能够通过克尔透镜效应在空气中自聚焦形成细丝[7,8];这种脉冲是国防应用的理想选择,因为它们可以以极高的精度和最小的衰减对目标造成最大伤害。由于在 MWIR 波长区域工作的增益介质有限,光参量啁啾脉冲放大(OPCPA)成为最佳方法。1 µ m 激光器泵浦的氧化物非线性晶体,如砷酸钛钾(KTA),能够在 3.9 µ m 波长下产生 30 mJ、80 fs、20 Hz 脉冲[9]。2 µ m 泵浦源使基本可能的上限转换效率翻倍,并且可以使用非线性度更大的非氧化物晶体,如 ZnGeP 2(ZGP),d 36 = 75 pm/V [10 – 12]。ZGP 的热导率为 36 W/(m·K),是 KTA 的 20 倍,对于高重复率/高平均功率操作至关重要。在用 1.94 µ m Tm:光纤激光器泵浦时,Ho:YLF 能够将 2 µ m 皮秒脉冲放大到几十毫焦耳[13-15]。Ho 3 +的 5 I 8 和 5 I 7 流形分别包含 13 个和 10 个能级,如图 1 所示[16]。2.05 µ m 脉冲的放大归因于模拟的上激光能级 N 2 (在 5153 cm − 1 处)和下激光能级 N 1 (在 276 cm − 1 处)之间的发射跃迁。由于基态 N 0 (在 0 cm − 1 处)和下激光能级之间的能量差很小,Ho:YLF 被认为是准三能级增益介质。如图 1 所示,相关激光能级的粒子数随温度而变化,因此 Ho:YLF 等准三能级放大器的增益在很大程度上取决于温度。高能皮秒 Ho:YLF 激光器通常基于啁啾脉冲放大 (CPA)。在产生超过 20 mJ 能量的 2 µ m 皮秒 CPA 激光器中,前置放大器的脉冲由功率放大器增强。最终输出能量由输入脉冲能量和增强器的增益决定。最近,在 2016 年 11 月 1 日展示了一种使用再生放大器和两级增强器放大输出 56 mJ 的 Ho:YLF CPA 系统。
为了模拟 NV 自旋对 MW 场(特别是磁场分量)的响应,使用量子主方程方法推导出理论方程。在室温下,NV 自旋包含 NV − 的基态和激发自旋三重态、NV − 的两个中间态以及两个 NV 0 态。由于 1 A 1 的自旋寿命远小于 1 E 的寿命(参见正文),因此单重态实际上被假定为一个状态(1 E)。NV 0 态的包含解释了导致电荷状态切换的电离效应。在 NV 0 态下,它可以被光泵送回 NV − 的基态三重态。图 S.I.1 显示了由九个能级组成的 NV 能量图。如果忽略电离效应,在简并三重态的情况下,可以使用具有更少能级的更简单的模型。建模 ODMR 的基本状态是 NV − 的基态、中间态和激发态。但是,由于 NV 0 和 NV − 之间的跃迁速率