所提出的 VR 应用的特点是使用 AI 自然语言处理来阅读和理解书中的日语单词,并在 VR 眼镜中显示适当的图像。通过一款名为 Immersion VR Reader 的应用程序已经实现了在 VR 中阅读书籍的功能,该应用程序专为 Oculus GO (2) 提供。但是,这个应用程序存在一个问题。当我们开始开发本文提出的 VR 应用程序时,它仅支持英语。另一个原因是,还没有开发其他支持日语阅读理解的应用程序。作为回应,我们将注意力转向了 IBM 已经宣布的 Watson (3) 的使用。 Watson 的机器学习使用自然语言处理,具有理解文本的能力。在自然语言处理阶段,句子被分成几个单词,这个过程称为“分词”,然后每个单词被分配一个词性。此外,我们决定从中自动搜索名词,并将相应的搜索结果投影为VR。作为制作的第一步,我们将使用 Tone Analyzer 功能,这是 Watson 中可用的功能之一,可以提取阅读一段文本时感受到的情绪。此外,我们希望将获取到的情绪和对应的背景颜色投射到VR中。因此,本申请的特点是,利用Watson从文本中获得的情感数据,通过游戏引擎(Unity)获取,并构建相应的VR。这款应用程序的工作方式是,当你戴上 VR 眼镜时,空白处就会出现一个白色方块。然后,正在阅读的书的文本就会显示在空间的中心。接下来,系统自动搜索文本中的名词,并利用VR以360°视角投射与名词对应的图像和背景颜色。如果句子中除了名词之外还有您感兴趣的单词,您可以使用蓝牙遥控器手动选择它们。此外,用户还可以通过音调分析器阅读眼前书籍的全文,并根据自然语言处理的结果显示VR环境的背景颜色,从而通过声音表达场景的氛围。图像和颜色。这将实现。
在众多AI 的创新应用中,聊天生成预训练转换器( Chat Generative Pre-trained Transformer, ChatGPT )的出现引起了广泛的关注,许多人使用后都感到惊讶;它建构在自然语言处理科技与大型语言模型的深度学习,具备语言理解和生成的应用能力( Brants, Popat, Xu, Och, & Dean2007 ),此系统不仅含括大多数中小学范围内的教材,甚至可以举一反三,运用不同观点与面向来回答一个问题;对于关心学生学习成效的老师来说,不免担心未来的课后作业,学生可能会运用ChatGPT 完美且快速地完成,但却对所应学习的专业知识一无所知( Atlas, 2023;
我们设计了一种陈述性记忆机制,它尽可能与神经科学和认知科学的发现保持一致,同时不违反证明合理性的数学逻辑要求。其主要特点如下。 寄存器和内容可寻址存储器中存储的值仅限于已证明的命题。由于信息处理的最小单位(一个已被证明的命题)有自足的意义,记忆管理(比如忘记不必要的知识)就变得更容易。另一个优点是,即使在合成过程中执行不完整的程序,数据结构也不太可能崩溃。由于程序执行的顺序也将变得更加灵活,因此在时间允许的情况下规划未来的行动将变得更加容易。 每次进行推理时,都会自动将已证明的命题添加到已证明命题集合中,即将信息写入联想记忆机制。目的是减轻程序负担,提高程序综合的性能。 我们计划提供两种类型的陈述性知识回忆:自动回忆和主动回忆。 (目前仅实现了主动回忆。)事件回忆并不涉及重现某一特定时刻大脑的整个内部状态,而是仅重现一个已证实的命题。这使得信息处理能够实现,例如从一个命题推断另一个命题。 回忆陈述性知识的机制也被设计成不破坏证明的合理性(第 3.7 节)。 陈述性知识分为证实命题(情景记忆)和语义记忆。 Pro5Lang 中的语义记忆是多个已证明命题的压缩和抽象版本,旨在使用 [5]2 中描述的方法通过归纳推理来获取。 (然而,在当前的实现中,语义记忆也是从一开始就手动提供的。)由于存在过度概括和获取不正确的语义记忆的可能性,因此有必要提供单独的机制来选择和忘记不正确的语义记忆。这将在第 5 节中讨论。 由于记忆空间有限,即使正确的陈述性知识也会被适当地遗忘。即使不时随机选择和删除已证明命题集合中的元素,图 2 和 Pro5Lang 中的算法也不会失去健全性。然而,证明可能需要更长的时间并且可能变得越来越难以完成。为了避免降低证明的效率,需要使用一些启发式方法来选择需要遗忘的知识。 (目前实施中尚未采取此类措施。)
可穿戴系统设计组合语言33 3组装语言线性代数3 3线性代数讯号与系统3 3信号和系统资料结构33 3数据结构近代物理33 3 3 3 3 3 3 3 3 3
1994年结业于京都大学研究生院工学研究科博士课程。博士学位(工程学)。自2006年4月起任京都大学研究生院信息学研究科教授。 2023年4月起,兼任国立情报研究所教授、所长。从事自然语言处理、知识信息处理方面的研究。曾获得自然语言处理协会10周年纪念论文奖、20周年纪念论文奖、文部科学大臣科学技术奖。 2024年4月,将在国立情报学研究所内设立大规模语言模型研究开发中心,与全国的研究人员一起进行研究开发,目标是构建透明、可信的日语版LLM。 ◼ 讲座(2)机器学习技术的演进及研发事例介绍
醋。 (我做了一些修改。)我对技术的进步感到惊讶,但与此同时,我也意识到,教育早已被认为是一个