图8- HDPC的矿化。艾丽莎白红s-钙复合物的染色; (a)概述,(b)原始放大40×(比例尺=100μm)和(c)矿物沉积的定量。矿化培养基(MM),低葡萄糖(LG)和高葡萄糖(Hg)。*表示组之间有统计学上的显着差异(p <0.05)。
1. 简介 乳腺癌 (BC) 是全球女性中最常见且最致命的癌症类型。尽管 BC 治疗有所改进,但局部区域复发和远处转移仍然存在 (Guo et al., 2019)。癌症干细胞 (CSC) 被证明是当今治疗效果不佳的主要原因之一。CSC 是一小群细胞,与构成整体肿瘤的致瘤性较低的癌细胞不同,具有自我更新和分化为许多不同细胞的能力 (Mertins, 2014; Phi et al., 2018)。然而,据估计,这些细胞不仅是新肿瘤形成的原因,也是对复发和化疗产生抗性的原因 (Ari et al., 2013; Aztopal et al., 2018; Mertins, 2014; Phi et al., 2018)。近年来的研究支持了这一假设,并揭示了许多因素导致CSC的分化(Aztopal et al., 2018; Mertins, 2014; Phi et al., 2018)。
摘要 — 脑机接口技术的最新进展表明,想象语音和视觉意象具有作为直观脑机接口通信的稳健范式的潜力。然而,这两个范式的内部动态及其内在特征尚未揭示。在本文中,我们研究了考虑不同频率范围的两个范式的功能连接。使用 16 名受试者进行十三类想象语音和视觉意象的数据集进行分析。在四个频率范围的七个皮质区域分析了想象语音和视觉意象的锁相值。我们将想象语音和视觉意象的功能连接与静息状态进行比较,以研究意象过程中的大脑变化。整个大脑区域的锁相值在想象语音和视觉意象期间都表现出显著下降。布罗卡区和韦尼克区以及听觉皮层主要表现出想象语音的显著下降,而前额叶皮层和听觉皮层则表现出视觉意象范式的显著下降。进一步研究大脑连接以及两种范式的解码性能可能作为性能预测因素发挥关键作用。关键词——脑电图;功能连接;想象语音;直观脑机接口;视觉意象
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年3月7日发布。 https://doi.org/10.1101/2025.03.02.641080 doi:Biorxiv Preprint
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2025年3月1日发布。 https://doi.org/10.1101/2025.02.26.640353 doi:Biorxiv Preprint
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecom- mons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
肝发育和免疫功能的机制。使用加权基因共表达网络分析(WGCNA),我们分析了10天(n = 3),2个月(n = 10),6个月(n = 6)和10个月(n = 10)hanwoo犊牛的肝样品,以鉴定生长阶段的基因模块。我们确定了与免疫反应,代谢过程和细胞外基质组织有关的重要基因表达模式,尤其是在关键发育阶段。这些发现表明,肝功能的动态转移,尤其是早期的免疫调节,这是由于免疫相关的HUB基因DOCK2的参与而强调的,并且随着犊牛成熟而增强了代谢活性。这些结果有助于了解肝脏特异性发育和
图4:模型解释的形状结果。a)分形的第一个折叠的形状输出具有数据集。(b)BINNED功能数据集的第一个折叠的形状输出。shap值表示特征对模型输出的影响,正值表示对正类别的分类产生影响,而负值则表示相反。颜色映射指示该特征如何影响模型决策,例如,如果该功能具有高值和高的外形值,则此功能的增加是正类别的特征。
该数据集包括对常用电池(即三星 ICR18650-26J 圆柱形锂离子电池)的电化学阻抗谱测量。使用随机相位多正弦激励信号,在 0.05 Hz 至 10 0 0 Hz 的十四个不同频率下测量电池的复阻抗。对于每个激励频率,电流幅度为 50 mA,导致测量不确定度约为 0.1 m Ω。在四种不同的全新电池的十种不同充电状态下提供六次重复测量。从六个单独的放电循环中获得每个单独电池的重复 EIS 测量结果。所有测量均在将电池放置在 25 ± 1 °C 的温控室中进行。每次测量前都让电池热化。© 2022 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可协议开放获取的文章 ( http://creativecommons.org/licenses/by/4.0/ )
Virgil Woods* 1、Tyler Umansky* 1、Sean M Russell1、Briana L McGovern 2.3、Romel Rosales 2.3、M Luis Rodriguez 2.3、Harm van Bakel 2,4,5,6、Emilia Mia Sordillo 7、Viviana Simon 2,3,7,8,9、Adolfo Garcia-Sastre 2,3,7,7 9.10、Kris M White 2.3、William F Brubaker 11、Davey Smith 12 和 Daniel Haders** 1