以各种形式伪装的相关性是经典和量子系统中一系列重要现象的基础,例如信息和能量交换。量子互信息和相关矩阵的范数都被视为总相关性的适当度量。我们证明,当应用于同一系统时,这两个度量实际上可以表现出明显不同的行为,至少在两种极端情况下除外:当没有相关性时和当存在最大量子纠缠时。我们通过提供相互作用的二分系统度量的时间导数的解析公式来进一步量化差异。我们认为,要正确解释相关性,应该考虑相关矩阵(以及子系统的简化状态)提供的全部信息。标量(例如相关矩阵的范数或量子互信息)只能捕捉相关性复杂特征的一部分。作为一个具体的例子,我们表明在描述与相关性相关的热交换时,这两个量都不能完全捕捉潜在的物理特性。作为副产品,我们还证明了具有局部和短程相互作用的系统中量子互信息的面积定律,而无需假设马尔可夫性或最终热平衡。
图1。(a)双泵BS FWM工作原理。当两个泵(𝑃1和𝑃2)和播种信号(𝑆)输入三阶非线性波导中时,在满足相位匹配条件的假设下,BS FWM可能会发生。在这种情况下,光子从信号𝑆散射到两个怠速(𝐼,𝑏和𝐼,𝑟),并在两个泵之间同时进行能量交换。实心箭头表示光子能量的损失(下)和增益(向上),而虚线箭头表示𝐼,𝑟(红色)和𝐼(blue)cases的能量交换的方向。(b)BS-IM-FWM方案的相位匹配机理的图形说明。如果将𝑃1和𝑃2放置在𝑇𝐸00模式下,并且在多模式波导的10模式下的信号和空闲器,则可以在平均频率的两个pumencies和light of the Myder的igv曲线上绘制两个级别的IGV曲线的水平线(以及两个泵的ig p pulps of puls或the p pys)的水平曲线,并保留相匹配条件,并保留。 𝐵𝑆,𝑟)。
摘要在这项研究中,讨论了电动汽车(EV)的充电站中的分散电源调度。电源调度问题通过实时的Stackelberg游戏解决。在此游戏中,领导者是EV充电站(EVC),而追随者是EV。EVC的偏好被设计为自我足够,为电动汽车提供充电服务,并保持电池储能系统(BESS)的能量水平,这些电池储能系统(BESS)是通过不同的实用程序功能描述的。此外,追随者的偏好是最大化其EV充电能力。学习算法利用共识网络以迭代分散的方式达到广义的Stackelberg平衡作为电动汽车之间的功率调度。模拟中的静态和动态案例研究都验证了所提出的策略的成功实施,对不确定性的灵活性以及对电动汽车数量的可配置性。与具有标准的集中基准策略相比,它的性能也出色,即平均电动汽车充电时间,贝斯的充电数量和排放率和能量交换到电网。最后,建立了一个缩小的实验实现,以验证基于游戏理论的策略的功能和有效性。
光线互动在我们的日常生活中非常重要,因为他们对我们如何看待周围的世界负责。他们还负责为什么天空是蓝色的,以及为什么在太阳下方会感到温暖。轻度 - 物质相互作用是指光颗粒与材料原子中存在的电子相互作用的过程。与我们在通常的生活中观察到的相互作用类型不同,例如球碰撞,轻度互动是一种纯粹的量子机械现象。这是由于能源离散的结果,即量子力学中的能量水平。可以通过想象一个我们用大理石填充的空罐子来理解这一点。在这种情况下,每个大理石代表一个能量的一个单位,一个量子。去除或添加大理石到罐子中等同于从/向我们的粒子中添加或添加能量。在20世纪中叶,发现光颗粒(光子)与这些量子的能量相对应。通常,光 - 摩擦相互作用涉及通过两个过程在光子和电子之间的能量交换:吸收和发射。通过吸收光子,当电子转变为较高的能级(向罐子中添加大理石)时,就会发生吸收,而发射涉及电子返回到较低的能级(从罐子中去除大理石)并以光子的形式释放其能量。这些过程导致光耦合。
摘要:由于气候变化和能源需求的增加,新能源技术变得越来越重要,它们显示出缓解环境问题的巨大潜力。为了最大限度地利用可再生能源,热电联产系统被认为更有效、更经济、更环保。然而,基于可再生能源的热电联产系统仍处于发展阶段。因此,本研究提出了一种新方法,利用风能和太阳能光伏系统生产热电联产,以满足小型分布式社区的能源需求。为此,开发了一个优化模型,以合理利用可再生能源发电,满足两个选定社区的电力和供暖需求。太阳能和风能系统的削减能源被热负荷控制器与天然气锅炉结合使用,用于产生热量。开发的模型还与电网集成,用于能量交换。本研究还有助于评估热电联产系统的经济和环境可行性,并确定最佳最优运营策略,以扩大可再生能源利用并最大限度地降低能源成本。结果表明,可以生产大量清洁能源,满足选定社区 79% 的能源需求,最低平准化能源成本为 0.013 欧元/千瓦时;同时,所提出的系统每年可减少 4129 吨二氧化碳排放量。
磁共振光谱(MRS)是一种无创技术,可用于测量组织中不同化学成分的浓度。该技术基于与磁共振成像(MRI)相同的物理原理,以及原子内部磁场和特定核之间能量交换的检测。使用MRI,通过根据发射信号的强度分配不同的灰色值,通过分配不同的灰色值,将这种能量交换以射频信号测量。MRI和MRS之间的主要区别在于,在MRI中,发射的射频基于核的空间位置,而MRS则检测到扫描组织的化学成分。MRS产生的信息以图形方式显示为与所检测到的各种化学物质一致的峰值的频谱。MRS可以作为MRI的辅助手术。首先生成MRI图像,然后在感兴趣的位点,在体素水平(3维体积X像素)处开发MRS光谱。感兴趣的体素(VOI)通常是一个立方体或矩形棱镜,尺寸像素的体积为1至8 cm。MRI提供了大脑的解剖图像,MRS提供了与潜在动态生理学相关的功能图像。MRS可以使用现有的MRI设备执行,并通过所有新的MRI扫描仪中提供的其他软件和硬件进行修改。扫描仪中的成像时间增加了15至30分钟。
摘要:神经系统的电活动是意识现象学的基础。感官知觉触发与环境的信息/能量交换,但大脑的反复激活保持静止状态,参数恒定。因此,感知形成一个封闭的热力学循环。在物理学中,卡诺发动机是一种理想的热力学循环,它将热量从热库转化为功,或者反过来,需要功将热量从低温库转移到高温库(逆卡诺循环)。我们通过吸热逆卡诺循环分析高熵大脑。其不可逆激活为未来定位提供了时间方向性。神经状态之间的灵活转移激发了开放性和创造力。相反,低熵静止状态与可逆激活平行,可逆激活通过重复思考、悔恨和遗憾强加过去的焦点。放热卡诺循环会降低精神能量。因此,大脑的能量/信息平衡形成了动机,被感知为立场或负面情绪。我们的工作从自由能原理的角度分析了积极和消极情绪以及自发行为。此外,电活动、思想和信念适合于时间组织,这是与物理系统正交的条件。在此,我们提出,对情绪热力学起源的实验验证可能会启发更好的精神疾病治疗方案。
背景。近几十年来,人们对太阳日珥中的大振幅纵向振荡 (LALO) 进行了广泛的研究。然而,它们的衰减和放大机制尚不清楚。目的。在本研究中,我们使用高分辨率数值模拟研究了 LALO 的衰减和放大,空间分辨率逐渐提高。方法。我们使用包含倾角区域的二维磁配置对 LALO 进行了时间相关的数值模拟。在磁倾角中加载日珥质量后,我们通过沿磁场扰动日珥质量来触发 LALO。我们使用四个空间分辨率值进行了实验。结果。在分辨率最高的模拟中,周期与摆模型非常吻合。收敛实验表明,随着分辨率的提高,阻尼时间在底部日珥区域达到饱和,这表明振荡衰减存在物理原因。在日冕顶部,振荡在最初几分钟内被放大,然后缓慢衰减。特征时间表明在具有最高空间分辨率的实验中放大更显著。分析表明,底部和顶部日冕区域之间的能量交换是导致 LALO 衰减和放大的原因。结论。高分辨率实验在研究 LALO 的周期和阻尼机制时至关重要。只有使用足够高的空间分辨率时,周期才与摆模型一致。结果表明,在空间分辨率不足的模拟中,数值扩散可能会隐藏重要的物理机制,例如振荡放大。
过去二十年的实验技术进展允许设计具有不同应用的广泛量子设备,例如量子计算[1-4],量子传感和量子加密[5-7]等。我们可能会说,在量子设备应用中,热力学的作用很重要,这与最佳性能搜索及其由于耗散和可逆性而对其约束的理解有关。通常,Quantum设备在微尺度和纳米尺度上运行,其中量子波动变得与热波动一样重要,并且对能量交换的正确描述是按顺序进行的。量子热力学[8-14]在过去几年中一直在建立,以描述量子尺度正确的能量交换。量子波动定理允许实心框架并建立量子系统的非平衡热力学的限制[15 - 33]。此外,将量子系统用作不同量子热设备中的工作流体是一种有趣的方法,可以提高热周期的性能,而不是其经典的对应物[34 - 54]。量子热力学的另一个突出特征是将量子信息(例如相干性和非古典相关性)作为热力学任务的附加资源[9,11]。已使用不同的实验平台来研究量子热力学方面,例如,捕获的离子[55 - 57],量子电路电动力学[12,58,59],量子光学[60 - 62],光力学系统[63,64],,核磁共振>
北极区的变暖是北半球平均速率的两倍,比1979年以来的全球快了近四倍。在欧洲的斯瓦尔巴群岛的欧洲群岛中,当地的变暖速度甚至更高。这种变暖正在改变陆地积雪,该积雪调节了与大气的表面能量交换,这是北极集水区的大部分径流,也是大气沉积化合物(包括污染物)的短暂储层。需要改进观察结果,需要对北极积雪变化的理解和建模,以预测这些变化对北极气候,大气,地面ecosys tems和社会经济因素的影响。svalbard一直是极地研究的国际枢纽,并从发达的科学基础设施中受益。在这里,我们提出了由多学科专家社区共同开发的斯瓦尔巴德雪研究未来的议程。我们回顾了雪研究的最新趋势,确定关键知识差距,确定未来的研究工作的优先级,并建议采取支持行动,以促进我们对与冰川质量平衡,多年冻土,表面水文,陆地生态学,循环和命运有关的当前和未来雪状况的了解,大气污染物的循环和命运以及雪覆盖的遥感。此观点文章解决了与圆形北部相关的问题,可以用作其他国家或国际北极研究计划的模板。