摘要:氧化应激是慢性疾病(例如2型糖尿病,心血管疾病和肝病)发展的关键因素。靶向氧化损伤的抗氧化剂疗法在预防和治疗这些疾病方面显示出很大的希望。berberine是一种源自Berberidaceae家族中各种植物的生物碱,可通过多种机制增强细胞防御抗氧化应激。它激活了AMP激活的蛋白激酶(AMPK)路径,从而减少了线粒体活性氧(ROS)的产生并改善能量代谢。此外,它增强了关键抗氧化酶(例如超氧化物歧化酶(SOD),过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPX))的活性,从而保护细胞免受氧化损伤。这些动作使小ber虫有效地管理诸如2型糖尿病,心血管疾病和神经退行性疾病之类的疾病。silymarin是一种源自Silybum Marianum的黄酮材料,对肝脏保护特别有效。它激活核因子2与2相关因子2(NRF2)途径,增强抗氧化剂酶的表达并稳定线粒体膜。另外,水莲蛋白通过螯合金属离子降低了ROS的形成,并且还会减少炎症。这使得对诸如非酒精性脂肪肝疾病(NAFLD)和与酒精有关的肝脏疾病等疾病有益。本综述旨在强调小ber骨和沙龙蛋白发挥其抗氧化作用的不同机制。
图1多个系统萎缩的治疗方法这种形状说明了针对多系统萎缩(MSA)病理机制的各种治疗策略。MSA的特征是神经元丧失,神经胶质病和α-突触核蛋白夹杂物的积累。抗 - α突触核蛋白疗法包括 - 在诸如ANELE138B,清除剂,例如PD01A,PD03A,LU AF82422,TAK - 341和UB – 312和UB –312和UB –312和抑制方法之类的清除剂中的聚集。细胞疗法涉及修复和再生受损神经组织的间充质干细胞。能量代谢和INSU -LIN信号 - 靶向疗法包括脱齿素 - 4,泛氨醇和NAD +补充。抗炎性和神经保护疗法具有氟西汀,AAV2 - GDNF和KM819的化合物,可减少炎症并提供神经保护作用。细胞调节文本包括显示退化的神经元,α-突触核蛋白夹杂物,活化的星形胶质细胞和小胶质细胞,免疫 - 反应性T细胞,IM成对的线粒体,Pro - 炎性细胞因子,肌蛋白损失和髓质细胞质细胞胞质包含(GCIS)(GCIS)。此视觉代表提供了MSA中治疗策略及其细胞靶标的概述。
甘油醛-3-磷酸脱氢酶(GAPDH)是一种关键的糖酵解酶,在癌细胞的能量代谢中起着至关重要的作用,并已被认为是抗癌药物发展的宝贵目标。在一系列5个溶解的3-溴-4,5-二羟唑(BDHI)衍生物中,我们鉴定了螺旋形化合物11,它能够以更快的koning contens noverativitivity noveritivity与Koning conse nocents novers notive,它能够使重组的重组人共价抗反应率,而已知的酸性含量为potent hat of thangect hate hate hate hate of potenthg potenthg potec。计算研究证实,构象刚化对于稳定抑制剂与结合位点的相互作用至关重要,因此有利于随后的共价形成。对不同pH的固有弹头反应性的研究揭示了11种自由硫醇的反应性可忽略不计,强调了其与其他硫基团相对于HGAPDH的活化半胱氨酸有选择性反应的能力。化合物11在四种不同的胰腺癌细胞系中强烈降低了癌细胞的生长,其抗增生活性与HGAPDH的细胞内抑制良好相关。总体而言,我们的结果有资格11在Hibitor中具有有效的HGAPDH共价,具有中等的药物样反应性,可以进一步利用以发展抗癌药。
1. 引言 为了更详细地了解基因多态性及其意义,有必要定义叶酸-蛋氨酸循环和甲基化的概念。叶酸-蛋氨酸循环是确保体内甲基化所必需的。甲基化是向物质中添加甲基以激活它们。甲基化是一个非常重要的过程,它影响基因表达(活性)、解毒-激活肝脏解毒的II期、维持能量代谢、提供膜结构、髓鞘、乙酰胆碱代谢、免疫调节、神经递质代谢-合成多巴胺、血清素、去甲肾上腺素、乙酰胆碱;褪黑激素的合成、衰老(“表观遗传时钟”-DNA甲基化越少,衰老越快),确保各种基因的开启和关闭、DNA分子的复制(加倍)、DNA修复和重组、蛋白质生物合成、DNA分子的保护和恢复。甲基化是清除体内毒素的关键方法。完善的甲基化过程使毒素和重金属更容易被清除,从而降低患癌症的风险。与异常甲基化有关的一些疾病包括:心血管疾病、骨质疏松症、糖尿病、行为障碍、早产、宫颈癌、肠癌和肺癌。甲基化还负责通过控制同型半胱氨酸水平来调节炎症过程。在甲基化障碍的情况下,血液中的同型半胱氨酸水平会升高,从而增加患心血管疾病的风险。甲基化是将甲基基团附着到某些分子上以激活它们的过程。首先,一种非常重要的氨基酸——蛋氨酸进入人体时会
摘要 缺氧越来越被认为是一种重要的生理驱动力。氧气 (O 2 ) 供应减少(例如高海拔地区的吸气性缺氧)会诱导特定的转录程序,使细胞能够适应较低的 O 2 和有限的能量代谢。这种转录程序部分受缺氧诱导因素控制,部分独立于缺氧诱导因素。值得注意的是,大量的运动认知锻炼会刺激大脑中的这一转录程序,导致与急剧增加的 O 2 需求相比,O 2 供应相对减少。我们将这种重要的需求反应性、O 2 供应相对减少称为“功能性缺氧”。功能性缺氧似乎对于持久适应更高的生理挑战至关重要,包括实质性的“大脑硬件升级”,这是高级性能的基础。缺氧诱导的大脑促红细胞生成素表达可能在这些过程中起决定性作用,可以通过重组人促红细胞生成素治疗来模仿。本文综述了吸气时氧气调节如何有助于增强大脑功能的提示。从而为利用适度吸气和功能性缺氧治疗脑部疾病患者奠定了基础。最后,本文概述了一项计划中的多步骤试点研究,该研究针对健康志愿者和第一批患者,旨在提高吸气时缺氧下运动认知训练的表现。
摘要:马匹是大型非鲁umminant的食草动物,并依靠微生物发酵来获得能量,其中一半以上的维持能量需求来自微生物发酵的闭和结肠。为此,马匹的胃肠道(GIT)具有广泛的各种微生物,每个GIT段都不同,这对于有效利用饲料的利用至关重要,尤其是使用内源性酶不会或很少降解的营养素。此外,与其他动物物种一样,GIT微生物群与宿主的细胞永久相互作用,并且参与了许多功能,其中炎症,免疫稳态和能量代谢。至于其他动物和人类,马肠道微生物组对饮食敏感,尤其是淀粉,纤维和脂肪的消耗。年龄,品种,比赛期间的压力,运输和运动也可能影响微生物组。由于其大小及其复杂性,马git微生物群容易受到由外部或内部压力源引起的扰动,可能导致胃溃疡,腹泻,结肠或结肠炎等消化系统疾病,并且被认为与诸如椎板炎,马层炎,马症,新墨西哥综合症或肥胖综合症等全身性疾病有关。因此,在本综述中,我们旨在了解GIT的每个部分的结构和功能术语中的共同核心微生物组,并确定潜在的健康或疾病的微生物生物标志物,这些生物标志物对于预测推定的扰动至关重要,优化全球实践和发展适应性的营养策略和个性化营养和个性化营养。
油炸食品在西方饮食模式中非常普遍。西方饮食与患心血管疾病的高风险存在不利联系。心力衰竭 (HF) 是一种心血管疾病亚型,是一种发病率和死亡率都很高的全球流行病。然而,长期食用油炸食品与 HF 发病之间的因果关系仍不清楚。我们的基于人群的研究表明,经常食用油炸食品与 HF 风险增加 15% 密切相关。因果关系可能归因于油炸食品中的丙烯酰胺饮食暴露。进一步的横断面研究表明,丙烯酰胺暴露与 HF 风险增加有关。此外,我们发现并证明长期接触丙烯酰胺可能会诱发斑马鱼和小鼠的 HF。从机制上讲,我们揭示了丙烯酰胺由于线粒体功能障碍和代谢重塑而引起心脏能量代谢紊乱。此外,丙烯酰胺暴露通过抑制NOTCH1-磷脂酰肌醇3-激酶/AKT信号传导诱导心肌细胞凋亡。此外,丙烯酰胺暴露可能影响生命早期的心脏发育,并且丙烯酰胺暴露的不利影响通过DNA甲基转移酶1(DNMT1)引起的表观遗传变化对下一代构成威胁。在本研究中,我们从基于人群的观察到实验验证,揭示了油炸食品和丙烯酰胺作为一种典型的食品加工污染物对HF的不利影响和潜在机制。总之,这些结果在流行病学和机制上为揭示丙烯酰胺引发HF的机制提供了强有力的证据,并强调了减少油炸食品消费对降低HF风险的重要性。
摘要 缺氧越来越被认为是一种重要的生理驱动力。氧气 (O 2 ) 供应减少(例如高海拔地区的吸气性缺氧)会诱导特定的转录程序,使细胞能够适应较低的 O 2 和有限的能量代谢。这种转录程序部分受缺氧诱导因素控制,部分独立于缺氧诱导因素。值得注意的是,大量的运动认知锻炼会刺激大脑中的这一转录程序,导致与急剧增加的 O 2 需求相比,O 2 供应相对减少。我们将这种重要的需求反应性、O 2 供应相对减少称为“功能性缺氧”。功能性缺氧似乎对于持久适应更高的生理挑战至关重要,包括实质性的“大脑硬件升级”,这是高级性能的基础。缺氧诱导的大脑促红细胞生成素表达可能在这些过程中起决定性作用,可以通过重组人促红细胞生成素治疗来模仿。本文综述了吸气时氧气调节如何有助于增强大脑功能的提示。从而为利用适度吸气和功能性缺氧治疗脑部疾病患者奠定了基础。最后,本文概述了一项计划中的多步骤试点研究,该研究针对健康志愿者和第一批患者,旨在提高吸气时缺氧下运动认知训练的表现。
摘要 缺氧越来越被认为是一种重要的生理驱动力。氧气 (O 2 ) 供应减少(例如高海拔地区的吸气性缺氧)会诱导特定的转录程序,使细胞能够适应较低的 O 2 和有限的能量代谢。这种转录程序部分受缺氧诱导因素控制,部分独立于缺氧诱导因素。值得注意的是,大量的运动认知锻炼会刺激大脑中的这一转录程序,导致与急剧增加的 O 2 需求相比,O 2 供应相对减少。我们将这种重要的需求反应性、O 2 供应相对减少称为“功能性缺氧”。功能性缺氧似乎对于持久适应更高的生理挑战至关重要,包括实质性的“大脑硬件升级”,这是高级性能的基础。缺氧诱导的大脑促红细胞生成素表达可能在这些过程中起决定性作用,可以通过重组人促红细胞生成素治疗来模仿。本文综述了吸气时氧气调节如何有助于增强大脑功能的提示。从而为利用适度吸气和功能性缺氧治疗脑部疾病患者奠定了基础。最后,本文概述了一项计划中的多步骤试点研究,该研究针对健康志愿者和第一批患者,旨在提高吸气时缺氧下运动认知训练的表现。
结果:结果表明,瘤胃总挥发性脂肪酸(VFAS),乙酸,丁酸酯,总枝链VFA,ISO丁酸和ISO-butrate在T-sheep中比H-Sheep高。瘤胃细菌的α多样性不受饮食能量的影响,但显示出绵羊品种的区别。具体来说,T-sheep瘤胃细菌的α多样性比H-sheep更高。瘤胃细菌的β多样性不受饮食能量或绵羊品种的影响,表明不同饮食和绵羊品种之间类似的瘤胃细菌群落。瘤状菌和坚硬的门在瘤胃中占主导地位,在T肩中观察到的相对丰度比H-sheep高。瘤胃中两个最丰富的属是Prevotella 1和Rikenellaceae RC9肠组。prevotella 1是瘤胃中主要的细菌属,而rikenellaceae rc9肠组则占主导地位在T-sheep的瘤胃中。微生物共发生网络分析表明,瘤胃发酵特征的变化是由于模块丰度的差异而导致的,并且在T-sheep的象征中观察到的VFA产生模块的丰度更高。微生物功能预测分析表明,饮食能量很少改变瘤胃细菌的功能组成。然而,绵羊品种之间瘤胃细菌的功能存在差异,T-sheep更加重视与能量代谢相关的功能,而H-sheep对蛋白质代谢相关的功能有更大的重视。