课程简介:学生将通过实践和模拟活动探索电路中的能量传递。绩效期望:HS-PS3-1:创建一个计算模型,当已知系统中其他组件的能量变化和流入和流出系统的能量时,计算系统中一个组件的能量变化。MS-PS3-2:开发一个模型来描述当远距离相互作用的物体的排列发生变化时,系统中会存储不同数量的潜在能量。具体学习成果:学生将能够 - 通过探索微电子在日常设备中的作用来吸引兴趣。 - 通过实践活动研究微电子元件如何管理和存储能量。 - 解释微电子系统中的能量关系并利用计算模型。 - 将他们对微电子能量管理的理解应用于实际问题。 - 评估他们对微电子中的能量传递、潜在能和计算建模的理解。叙述/背景信息 对于微电子 5E 课程计划,学生需要掌握基本电路概念的基础知识,包括了解电阻器、电容器和电源等组件。他们应该熟悉能量传递的原理,包括势能和动能的作用,以及欧姆定律与电压、电流和电阻的关系。了解能量如何存储(在电容器中)和耗散(在电阻器中)很重要,以及微电子如何在智能手机或计算机等日常设备中发挥作用。熟悉电子表格或电路仿真软件等基本计算工具也将有助于学生在课堂上模拟电路中的能量关系。 科学与工程实践:开发和使用模型 开发一个模型来描述不可观察的机制。(MS-PS3-2) 使用数学和计算思维 创建现象、设计设备、过程或系统的计算模型或模拟。(HS-PS3-1)
本论文/毕业论文由 Scholarship@Western 免费提供给您,供您开放访问。它已被 Scholarship@Western 的授权管理员接受并纳入电子论文和毕业论文库。如需更多信息,请联系 wlswadmin@uwo.ca 。
我们从理论上研究了 Dicke 量子电池中充电功率的增强,该电池由耦合到单模腔光子的 N 个两能级系统 (TLS) 阵列组成。在 N 较小的极限下,我们解析地解决了完全充电过程的时间演化。发现驱动哈密顿量的特征向量是伪埃尔米特多项式,因此演化被解释为类似谐振子的行为。然后我们证明,在传输相同数量的能量时,使用集体协议的平均充电功率比并行协议大 N √ 倍。与之前的研究不同,我们指出这种量子优势不是源于纠缠,而是由于 TLS 之间的相干协同相互作用。我们的结果为 Dicke 电池的动态充电过程提供了直观的定量洞察,并且可以在真实的实验条件下观察到。
缺乏能够在金星表面运行和生存的长寿命电源从根本上限制了对这颗迷人星球的实地探索。作为 NASA 创新先进概念 (NIAC) 第一阶段研究的一部分,评估和开发了一种创新的任务架构,利用无线方式将电力从在金星大气中运行的车辆传输到地面着陆器。确定的最有前途的架构是动力飞机,它使用高温太阳能电池阵列在金星大气的上游收集太阳能,并将这些能量存储在机载高温可充电电池中。然后,这个空中平台将下降到云层下方,通过激光能量束将能量传输到金星表面的着陆器。地面着陆器将包括一个激光能量转换器,用于接收光束光能,将其转换为电能,并将其传输到机载高温可充电电池,供着陆器负载使用。在能量传输之后,飞机将上升到更高的高度,再次启动这个循环。通过微波传输传输电力的方案在技术上不可行,因为大气对这些波长的吸收作用很大。同样,对以轨道平台为收集和传送平台的架构的分析也发现,出于同样的原因,在技术上不可行。将气球技术用于飞行器/传送平台显示出一定的前景,但是,这种任务架构需要多个气球平台才能在 60 天的任务中实现着陆器的目标平均功率水平(10 W),以及某种技术成熟度较低的控制机制(叶片或转子)才能飞越着陆器位置。NIAC 第二阶段研究提出了结合激光功率传送的基于飞机的概念以供进一步开发。
摘要:虽然在太空中传输电力正在成为改进的重要角色,但无线系统也变得越来越必要。从理论上讲,特斯拉线圈是最便宜、最简单的方法之一。基本上,有三个主题至关重要。特斯拉线圈的运输就是其中之一。此外,特斯拉线圈的运输系统与卫星几乎相同。因此,我们的目标是以低成本制造它。其次,由于火星的大气层和特斯拉线圈的功率,在轨道和火星表面之间发电是另一个问题。我们的目标是在低压下探测特斯拉线圈的功率。正如本文将提到的,从理论上讲,我们的论文是成功的,证明了我们的理论是可行的。第三,远距离发电是我们定理的基础。我们正在改变公式中的结构变量,使其更有利于实现主要目的。
摘要。低聚聚乙二醇 (PEG) 链中的振动能量传输可以通过光学振动链带以弹道方式进行,表现出快速而恒定的传输速度和高传输效率,从而提供了将超过 1000 cm -1 的大量能量传输到超过 60 Å 的远距离的方法。我们报告了分子内能量传输时间、链间传输速度和端基冷却速率如何取决于环境的刚性和极性。实验使用端基标记的 PEG 低聚物和二维红外 (2DIR) 光谱进行。弹道能量传输在链的一端通过在约 2100 cm -1 处激发叠氮基部分来启动,并通过探测琥珀酰亚胺酯的羰基拉伸模式在链的另一端记录下来。我们发现环境的刚性(聚苯乙烯 (PS) 基质与极性相似的溶液)不会对能量传输时间和链传输速度产生太大影响。这些结果表明,在弱极性介质中,尽管溶液中存在快速松弛成分,但溶液中发生的动态波动(但在固体基质中基本冻结)并不是链状态失相的主要原因。不同介质中传输时间的相似性表明二级链结构对 PEG 链中的传输影响不大。溶剂极性显著影响分子内传输:极性 DMSO 中的传输效率比非极性 CCl 4 或 PS 中的传输效率小约 1.6 倍。在极性更强的溶剂中,琥珀酰亚胺酯端基的冷却时间缩短,影响等待时间依赖形状,从而影响能量到达报告器的时间。本文分析了从数据中提取能量到达时间的不同方法。观察到的链间传输时间对溶剂极性的依赖性表明存在多个以不同群速度在 PEG 链中传播的波包。1. 简介。
通过能量传输进行电力分配 - 能量传输将实现与地球上类似的集中发电和分配。通过能量传输,电力可以传输到所需位置,而不必在每个位置建立电力系统和/或必须在长距离和极具挑战性的环境中铺设有线连接。尽管由于传输会损失一些能量,但能量传输可以弥补损失,因为它省去了笨重、昂贵的电缆成本以及发射和降落大型结构的成本。此外,能量传输系统的电力接收器可以在可用时收集太阳能,并根据需要在较冷的地方提供热能。以下文档详细介绍了 DragonSCALES 如何完美适用于能量传输系统:太空太阳能白皮书。