摘要:由于波函数需要多配置特性,双自由基系统的量子化学研究具有挑战性。在这项工作中,变分量子特征求解器 (VQE) 用于计算涉及双自由基物种的锂超氧化物二聚体重排在量子模拟器和设备上的能量分布。考虑到当前的量子设备只能处理有限数量的量子比特,我们提出了选择合适的活动空间来对需要许多量子比特的化学系统进行计算的指导原则。我们表明,使用量子模拟器执行的 VQE 可以重现所选活动空间的全配置相互作用 (Full CI) 获得的结果。但是,对于量子设备上的计算,结果与精确值的偏差约为 39 mHa。利用读出缓解方法可以将该偏差改善至约 4 mHa,利用状态断层扫描技术净化计算出的量子态,可以进一步改善至 2 mHa,接近化学精度。
摘要。这项研究通过整合可再生资源并促进与联合国可持续发展目标(SDGS)一致性提高能源效率,调查了一种解决智能电网能量分布的解决方案。随着可再生能源(例如太阳能)的采用更广泛地采用,这些间歇来源的有效整合给传统电网带来了挑战,这可能无法满足没有自适应解决方案的需求。使用通过MS4ME工具应用的Devs形式主义,在三个巴西城市中模拟了场景,其太阳能电池板的分布不同。结果表明,太阳能的产量在各个区域各不相同,从而影响节省和碳排放减少。该分析强调了整合太阳能电池板的经济和环境利益,尤其是在太阳辐射高的地区。这项调查提出了城市地区能源管理的策略,强调了软件建模和智能电网方案模拟的重要作用。
试卷 I - 力学与波动 第一单元 惯性参考系、牛顿运动定律、直线和圆周运动中粒子的动力学、保守力和非保守力、能量守恒、线性动量和角动量、一维和二维碰撞、横截面。 第二单元 简单物体的转动能量和转动惯量、刚体在水平和倾斜平面上的平动、转动和运动的综合、陀螺运动的简单处理。弹性常数之间的关系、梁的弯曲和圆柱体的扭转。 第三单元 中心力、两粒子中心力问题、减小质量、相对和质心运动、万有引力定律、开普勒定律、行星和卫星的运动、地球静止卫星。 第四单元 简谐运动、SHM 的微分方程及其解、复数符号的使用、阻尼和强迫振动、简谐运动的合成。波动的微分方程、流体介质中的平面行进波、波的反射、反射时的相变、叠加、驻波、压力和能量分布、相速度和群速度。
运输部门近年来目睹了电动汽车的逐步整合。电动汽车的优势是不发射大气污染物,而是由于电池限制而在自主方面处于不利地位[1]。可以提高车辆的自主权,保留电池寿命并减少系统的重量,可以添加诸如UltraCapacitor(UC)或燃料电池之类的来源[2]。但是,只有在由能源管理策略(EMS)控制的情况下,多功能系统才能有效,该策略(EMS)协调了将其特性和局限性考虑到源之间的功能分裂。EMS的主要目标本质上是协调源和负载之间的功率流,以提高系统的全局效率。使用的功率来源通常具有不同的本质,EMS必须实施策略,这些策略不仅要利用每个来源,而且还要尽可能地延长其寿命。ems使用固定频率过滤表示能量源之间能量分布的简单方法
摘要 朱诺号抵达木星后,人们可以在木星电离层上方进行重复的现场观测。朱诺号在近木点的低海拔和高速度使得直接采样电离层离子群成为可能。我们介绍了木星极光分布实验离子传感器(JADE-I)在电离层上方的首次直接观测。当看向航天器撞击方向时,JADE-I 可以测量低于 1 eV/q 的离子能量分布以及离子成分。我们报告了 17 次朱诺号通过近木点的观测结果。在这些纬度,低能离子由质子和较重的离子组成,质子是主要种类。每次通过时都可以看到重离子——主要是可能来自磁层的氧和硫,但它们的强度会有所不同。在一些近木星点上还观测到了其他痕量轻离子:H 3 +(17 个近木星点中的 6 个)、He +(17 个近木星点中的 2 个)。电离层离子的观测高度可达 ~7,000 公里。
回顾过去的 1000 年,我们发现红外 (IR) 辐射本身直到 200 年前才为人所知,当时赫歇尔首次报告了温度计实验 [1]。他建造了一个粗糙的单色仪,使用温度计作为探测器,以便测量阳光中的能量分布。继基尔霍夫、斯蒂芬、玻尔兹曼、维恩和瑞利的工作之后,马克斯·普朗克以著名的普朗克定律进一步推动了这一努力。传统上,红外技术与控制功能和夜视问题有关,早期应用仅与红外辐射检测有关,后来通过形成温度和发射率差异的红外图像(识别和监视系统、坦克瞄准系统、反坦克导弹、空对空导弹)。第二次世界大战期间见证了现代红外技术的起源。近五十年来,高性能红外探测器的成功开发使得红外技术在遥感问题上的应用取得了成功。大部分资金用于满足军事需求,但和平应用不断增加,特别是在二十世纪最后十年。这些包括医疗、工业、地球资源和节能应用。医疗应用包括热成像,其中对身体进行红外扫描可以检测出癌症或其他创伤,从而提高体表温度。地球资源测定
第 6 章 场发射 6.1 简介 电子束在许多应用和基础研究工具中起着核心作用。例如,电子发射用于阴极射线管、X 射线管、扫描电子显微镜和透射电子显微镜。在许多此类应用中,希望获得高密度的窄电子束,且每束的能量分布紧密。所谓的电子枪广泛用于此目的,它利用热阴极的热电子发射来操作。然而,由于发射电子的热展宽,实现具有窄能量分布的电子束很困难。因此,冷阴极的场发射备受关注,但需要大的电场导致尖端表面的原子迁移,因此难以实现长时间稳定运行。碳纳米管可能为这些问题提供解决方案。事实上,碳纳米管在冷场发射方面具有许多优势:与金属和金刚石尖端相比,纳米管尖端的惰性和稳定性可以长时间运行;冷场发射的阈值电压低;工作温度低;响应时间快、功耗低、体积小。本章后面将讨论,利用纳米管优异场发射特性的原型设备已经得到展示。这些设备包括 X 射线管 [Sug01]、扫描 X 射线源 [Zha05]、平板显示器 [Cho99b] 和灯 [Cro04]。在详细介绍场发射之前,我们先介绍一下早期的实验工作,这些工作确立了碳纳米管在场发射方面的前景 [Hee95]。图 6.1 显示了测量碳纳米管薄膜场发射的实验装置。其中,碳纳米管薄膜(纳米管垂直于基底)用作电子发射器。铜网格位于纳米管薄膜上方 20 微米处,由云母片隔开。在铜网格和纳米管薄膜之间施加电压会产生一束电子,该电子束穿过铜网格,并在距离铜网格 1 厘米的电极处被检测到。 (需要注意的是,这些实验是在高真空条件下进行的,场发射装置位于真空室中,残余压力为 10 -6 托。)图 6.1 显示了这种装置的电流与电压曲线,表明正向偏置方向的电流大幅增加(发射类似于二极管:对于负电压,电流非常小)。为了验证光束确实由电子组成,光束在磁场中偏转,偏转对应于具有自由电子质量的粒子的偏转。该图的插图显示了 ( ) 2 log / IV vs 1 V − 的图,即所谓的 Fowler-Nordheim 图(更多信息请参见
回顾过去的 1000 年,我们会发现红外 (IR) 辐射本身直到 200 年前才为人所知,当时赫歇尔首次报告了温度计实验 [1]。他建造了一个粗糙的单色仪,使用温度计作为探测器,以便测量阳光中的能量分布。继基尔霍夫、斯蒂芬、玻尔兹曼、维恩和瑞利的工作之后,马克斯·普朗克以著名的普朗克定律进一步推动了这一努力。传统上,红外技术与控制功能和夜视问题有关,早期应用仅与红外辐射检测有关,后来通过形成温度和发射率差异的红外图像(识别和监视系统、坦克瞄准系统、反坦克导弹、空对空导弹)。第二次世界大战期间见证了现代红外技术的起源。近五十年来,高性能红外探测器的成功开发使得红外技术在遥感问题上的应用取得了成功。大部分资金用于满足军事需求,但和平应用不断增加,特别是在二十世纪最后十年。这些应用包括医疗、工业、地球资源和节能应用。医疗应用包括热成像,其中对身体进行红外扫描可以检测出癌症或其他创伤,从而提高体表温度。地球资源测定是通过使用卫星的红外图像以及
此后,患者从 2022 年 1 月至 2022 年 4 月接受了 12 个周期的低强度冲击波疗法 (Li-ESWT),每周或每两周对膀胱进行一次治疗,这是一项超说明书用药。我们使用了 PiezoWave [2] 冲击波装置(Richard Wolf GmbH 和 ELvation Medical,德国)。施加的脉冲次数、F10G10 施加器、施加区域和冲击波穿透力均与先前使用 Li-ESWT [2] 治疗膀胱过度活动症的研究类似。能量分布在 20 级时,最大能量通量密度 (EFD) 为 0.32 mJ/mm 2,频率 (fR) 为 8 Hz(脉冲/秒)。在整个 12 周的治疗期间,共施加了 36,000 次冲击波。医生开具了每日一次2.5毫克他达拉非的辅助治疗,作为非说明书用途,并持续至Li-ESWT治疗完成。在Li-ESWT联合2.5毫克他达拉非治疗后1周、3个月、6个月、9个月和12个月,患者的肺血管阻力(PVR)均低于50毫升。
摘要。在设计国防基础设施和设施时,可用的著名资源,即 UFC 3-340- 02、TM 5-1300、ASCE/SEI 59-11 和 IS 4991,主要考虑球形炸药爆炸的试验结果,而战争和工业/常规行动中使用的大多数炸药都具有圆柱形/砖块的几何形状。文献中现有的研究工作考虑了圆柱形 TNT 的各种长宽比,圆柱形 TNT 的纵轴垂直于板,砖块 TNT 的长度平行于支撑物,其长度和宽度与单向板接触,结果表明,在相同质量的炸药的三种几何形状(圆柱形、球形和砖块)中,圆柱形炸药产生的压力最大,砖块炸药产生的压力最小。作者发现,砖块/圆柱形炸药相对于板边界条件的倾斜度会影响能量分布和相应的板损坏。本文使用 Abaqus 软件研究了倾斜砖块 TNT 炸药对接触爆炸下板坯响应的影响,重点比较了板坯损伤和其他响应,炸药倾斜度从 0 到 90 变化,增量为 22-1/2 度。砖块炸药的长度与板坯支撑对齐,其数值结果与实验结果具有很强的相关性。结果表明,最大反射压力随砖块炸药的倾斜度而变化,从而影响板坯损伤,包括穿孔尺寸和几何形状。