能源分配策略是改善代码覆盖范围和漏洞发现的最流行技术之一。核心直觉是,模糊器应将更多的计算能量分配给具有高效率的种子文件,以触发突变后独特的路径和崩溃。现有解决方案通常定义几个属性,例如,执行速度,文件大小以及控制流程图中触发的边缘的数量,以作为其分配逻辑中的关键测量值,以估算种子的潜力。通常认为财产的效率在不同的程序中相同。但是,我们发现此假设并不总是有效的。结果,具有静态能量分配逻辑的最先进的能源分配解决方案很难在不同程序上实现理想的性能。为了解决上述问题,我们提出了一种新型的程序敏感解决方案,名为Slime,以在每个程序的各种属性上启用具有各种属性的种子文件的自适应能量。具体来说,史莱姆首先设计了多个属性感知的队列,每个队列都包含带有特定撑杆的种子文件。第二,为了提高投资回报,粘液杠杆
摘要 基于四颗磁层多尺度航天器穿越地球弓形激波期间的高时间分辨率数据,评估了无碰撞等离子体激波前沿等离子体熵的演变和等离子体能量重新分布的过程。将离子分布函数分离为激波附近具有不同特征行为的群体:上游核心群体、反射离子、回旋离子、激波附近捕获的离子和下游核心群体。分别确定了这些群体的离子和电子矩值(密度、体积速度和温度)。结果表明,随着静电势的增加,太阳风核心群体体积速度主要在斜坡处减慢,而不是像假设的那样在足部区域减慢。反射离子群体决定了足部区域的性质,因此足部区域的质子温度峰值是不同离子群体相对运动的结果,而不是任何离子群体热速度的实际增加。评估的离子熵表明,激波的整个过程中出现了显著的增加:离子熵的增强发生在激波前沿的脚部和斜坡处,反射离子与上游太阳风离子一起出现,各向异性不断增加,产生了离子尺度静电波的爆发。激波的电子熵没有显示出显著的变化:电子加热几乎是绝热的。统一天文学词库概念:太阳风 ( 1534 ) ;行星弓形激波 ( 1246 )
1伊斯兰阿扎德大学菌属分支机构机械部,伊朗5651763764,伊朗2萨丹技术大学电气工程系(SAT),伊朗551351996,伊朗; f_zishan99@sut.ac.ir 3科学与高科技与环境科学研究所可再生能源和能源转化系,高级技术大学研究生校,克尔曼7631818356,伊朗; mahdimohkam.me@gmail.com 4计划,建筑技术系,罗马萨皮恩扎大学,通过弗拉米尼亚72,00196,意大利罗马; davide.astiasogarcia@uniroma1.it 5伦敦能源工程中心,电气和电子工程部,伦敦南岸大学,伦敦SE1 0AA,英国伦敦南岸大学 *通信:reza_alayi@iaugermi.ac.ac.ac.ir(R.A.); siamak.hosseinzadeh@uniroma1.it(S.H.); s.memon@lsbu.ac.uk(S.M.);电话。: +44-(0)-20-7815-7510(S.M.)
在本文中,我们提出了一种名为 AFLR UN 的新型定向模糊测试解决方案,其特点是目标路径多样性度量和无偏能量分配。首先,我们通过维护每个覆盖目标的额外原始地图来开发一种新的覆盖度量,以跟踪击中目标的种子的覆盖状态。这种方法可以将通过有趣路径击中目标的航点存储到语料库中,从而丰富每个目标的路径多样性。此外,我们提出了一种语料库级能量分配策略,确保每个目标的公平性。AFLR UN 从均匀的目标权重开始,并将该权重传播到种子以获得所需的种子权重分布。通过根据这种期望的分布为语料库中的每个种子分配能量,可以实现精确且无偏的能量分配。我们构建了一个原型系统,并使用标准基准和几个经过广泛模糊测试的真实应用程序评估了其性能。评估结果表明,AFLR UN 在漏洞检测方面的表现优于最先进的模糊测试器,无论是数量还是速度。此外,AFLR UN 在四个不同的程序中发现了 29 个以前未发现的漏洞,包括 8 个 CVE。
2。项目环境11 2.1对未来能源需求做出响应和计划11 2.2 ACT的排放减少目标和净零排放承诺12 2.2.1 ACT能量和排放概况12 2.2.1.1当前的能量分配网络12 2.2.1.2当前排放概况12 2.2.2.2.2.2.2.2.2.2 2.2.3.2对整个ACT经济进行持续转型的要求15 2.2.3.3影响转型的因素16
免疫与生殖是雌性昆虫生存和种群维持的重要功能。然而由于资源有限,这两个功能无法同时满足,从而导致它们之间需要进行能量权衡。值得注意的是,这种免疫-生殖权衡的机制尚不清楚,而能量竞争可能在其中起着核心作用。本研究以飞蝗为研究对象,对参与脂质合成和昆虫能量代谢的关键基因脂肪酸合酶(FAS)进行了研究。利用细菌感染和RNA干扰(RNAi)技术研究了不同处理下蝗虫的免疫、繁殖力和能量代谢模式的变化。本研究结果表明,藤黄微球菌感染可触发蝗虫的免疫反应,显著上调防御素3(DEF3)和Attacin的表达,并增强酚氧化酶(PO)活性。当 FAS2 沉默后,细菌攻击在较小程度上上调了 DEF3 和 Attacin 的表达,导致溶菌酶活性增加而不是 PO。此外,细菌感染导致脂肪体中糖原和葡萄糖含量降低,同时三酰甘油(TAG)含量显著增加。然而,在 FAS2 敲低后,脂肪体中的脂质和碳水化合物含量均显著降低。与单独的细菌感染相比,低 FAS2 表达进一步加剧了蝗虫的繁殖力受损。卵黄蛋白 A ( VgA ) 和卵黄蛋白 B ( VgB ) 的表达水平显著降低,卵巢萎缩严重。值得注意的是,卵巢重量仅为对照组的 21%。此外,雌性表现出最少的产卵行为。总之,我们的研究结果表明,在 FAS2 基因沉默后,蝗虫更倾向于免疫刺激能量激活,而生殖投入减少。该研究成果将有助于进一步探索蝗虫免疫和生殖能量之间权衡的分子机制。
这项研究研究了Solen sp。与壳尺寸,新鲜重量和环境压力有关。总共分析了105个剃须刀蛤,重点是壳宽度,长度,高度和CI(CI-1和CI-2)。结果表明,壳的右侧(width-1,长度1)和左侧(width-2,长度-2)边之间存在显着差异,对配对测量值观察到强的正相关(宽度为0.996,长度为r = 0.993)。尽管这种对称性,但平均值和可变性的轻微不对称表明在生长过程中的环境影响。壳高度与CI(CI-1:R = -0.623; CI-2:R = -0.640)表现出很强的负相关性,表明垂直壳的生长与生物量的能量分配之间的权衡。多个线性回归分析表明,壳的高度和长度对新鲜重量产生了最大的负面影响,而CI对新鲜重量产生了积极影响(CI-1:27.6,CI-2:26.1)。这些发现将壳的生长不对称和CI与水质扰动和沿海环境压力相关联,例如盐度变化,沉积和富营养化。此外,与气候变化相关的因素,包括温度升高和海洋酸化,可能通过改变碳酸钙沉积和代谢能量分配来加剧这些影响。这项研究强调了Solen sp的潜在用途。作为环境健康的生物指导者,并强调了对长期监测和微观结构分析的未来研究的必要性,以更好地了解环境条件下的双壳弹性。
牲畜胃肠道中肠甲烷的产生被认为是估计喂养系统中能量代谢的方程中的能量损失。因此,应与方程的其他因素重新校准甲烷排放的特定抑制作用所产生的保留能量。,通常假定饲料中的净能量增加,从而有益于产生功能,尤其是由于瘤胃中甲烷的重要产生而导致反刍动物。尽管如此,我们在这项工作中确认反刍动物的排放并不能转化为生产的一致改进。使用实验数据对能量流的理论计算表明,生产的净能量的预期改善很小,很难检测到使用抑制甲烷生成的饲料添加剂获得的甲烷产生(25%)的中等抑制(25%)。重要的是,当抑制甲烷发生时,使用规范模型的能量分配可能不足。缺乏有关各种参数的信息,这些参数在能量分配中起作用,并且在甲烷的挑衅下可能受到影响。在抑制甲烷发生时,应根据呼吸交换计算热量产生的公式。此外,还需要更好地理解抑制对发酵产物,发酵热和微生物生物量的影响。当前,这过多的H 2及其对微生物群和宿主的后果尚不清楚。2023作者。抑制作用诱导H 2的积累,H 2是用于产生甲烷的主要底物,对宿主没有能量值,并且大多数瘤胃微生物并未广泛使用它。当抑制肠甲烷发生时,所有这些其他信息将更好地说明反刍动物的能量交易。基于可用信息,得出的结论是,不保证肠甲烷抑制作用将转化为更多的进食动物。由Elsevier B.V.代表动物财团出版。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
有助于预测气候变化、天气、生物和农业生产力以及洪水,并可用于开展更广泛的生物地球科学研究。特别是,陆地上的能量和水储存会调节陆地和大气之间的通量,并在昼夜、季节和年际时间尺度上表现出持久性。此外,由于土壤水分、温度和积雪是综合状态,陆地表面强迫数据和参数化的偏差会累积为操作数值天气预报和气候模型及其相关耦合数据同化系统中这些状态的表示错误。这会导致地表水和能量分配不正确,从而导致预测不准确。如果陆地表面场可靠且在全球范围内可用,具有高空间分辨率和近实时性,则重新初始化陆地表面状态将缓解这一问题。
摘要:由于运输任务而减少人类使用化石燃料的可能步骤是用电池电动车代替柴油卡车。本文介绍了能量分配图,这使得可以在其完整的服务寿命中可以轻松地看到卡车的日常能源消耗。与商用柴油卡车相比,能量分布用于调查哪些驾驶模式适用于具有成本效益的电池电动卡车。表明,导致每千瓦时成本最低的推进能量的电池容量取决于驾驶方式,并且提出了选择最具成本效益的容量的算法。在许多情况下,发现电池电动卡车与柴油卡车竞争,尤其是当卡车的日常能源消耗较低时。确定它们可能更便宜的情况是有益的,因为这将有助于在总体所有权成本降低的细分市场中向电池电动卡车的过渡。