这可能会令人惊讶,但这并不是高强度的训练课程使您变得更强壮 - 这是恢复过程,使您的身体有时间适应逐渐艰苦的锻炼和力量训练。没有足够的休息,几乎不可能取得巨大的健身增长。硬训练课程(间隔,比赛日甚至力量能量区)消耗了血糖,并在中枢神经系统中疲劳。始终如一地以高强度进行锻炼会导致过度训练,表现减弱,疾病甚至伤害。恢复训练课程刺激和促进血液循环,并将营养成分带到最需要它的身体区域。
响应正能量区过渡,本文提出了一种能源工具,用于建模配备了能源生产系统和分配存储的建筑物之间的能源共享配置。该模型是针对城市规划师和能源决策者的目标,并深入了解建筑物在该地区建立虚拟或物理同类产品时,在该地区建立虚拟或物理的同类产品时,在促进零净能量平衡方面的作用。真正的城市地区被视为案例研究,并且能够针对正确定义的关键绩效指标来衡量能量性能。结果确认了建筑物之间能源共享在实现自我舒适和碳中性地区的战略作用。尤其是,插入的插入不仅允许该地区更高的自我耐用性(通过促进生产和需求的耦合),而且还可以在建筑物之间的分布率更高。然而,应该适当平衡光伏插入和储藏量,因为已经观察到,在增加生产和存储系统的数量时,分布减少以减少自主权,从而限制了互连的局部分布网格的有用性。
可以通过更高的密度和更高的能源效率的房屋替换陈旧的库存来减少房屋的能源足迹,该房屋配备了可再生能源的能源生产。在这项研究中,考虑了一个“双密度”模拟方案,在该场景中,社区中每个现有的独立房屋被同一土地上的两个相等起居区的房屋取代。新房屋被认为配备了多种能源效率措施(信封,HVAC和家用热水)和建筑物集成的光伏(BIPV)屋顶。TRNSYS软件用于模拟加拿大魁北克蒙特利尔建筑物的年度能源性能(45.5°N)。发现这两个新房屋可容纳同一土地上的两倍的人数,其能量比现有房屋少30%。单独使用的新房屋所需的电力比现有房屋少65%(从22,560降低到7,850 kWh yr -1)。此外,安装在两个新房屋上的BIPV屋顶可能会产生近三倍的电力(44,000 kWh yr -1)(15,700 kWh yr -1)。每年,BIPV系统可以直接提供房屋电力的近一半(44%)。年度太阳能发电的显着部分(84%)可以在房屋上直接使用,可以在现场存储以供以后用于增加自我消耗(例如,电力对电能或电力电动汽车),或者可以将其导出到在其他地方的网格中的脱碳(E.G.燃料,Hydrogen,Hydrogen)的脱碳化。能源有效构建和现场可再生能源生产的综合作用将使乘员从消费5,640 kWh yr-1转变为生产3,540 kWh yr-1。住宅致密化可以显着促进现有社区进入弹性的积极能源区。
技术研究所 - 以色列技术研究所,海法,海法,3200003,以色列B工程系Scienze 181a,43124,意大利E建筑与技术研究所,丹麦皇家美术学院建筑,设计和保护学院,菲利普·德·兰斯(Philip de Langes) Torino,Corso Duca degli Abruzzi 24,10129,Torino,意大利H工程和信息技术学院,P ecs,P´ECS,P´ECS,匈牙利技术研究所 - 以色列技术研究所,海法,海法,3200003,以色列B工程系Scienze 181a,43124,意大利E建筑与技术研究所,丹麦皇家美术学院建筑,设计和保护学院,菲利普·德·兰斯(Philip de Langes) Torino,Corso Duca degli Abruzzi 24,10129,Torino,意大利H工程和信息技术学院,P ecs,P´ECS,P´ECS,匈牙利技术研究所 - 以色列技术研究所,海法,海法,3200003,以色列B工程系Scienze 181a,43124,意大利E建筑与技术研究所,丹麦皇家美术学院建筑,设计和保护学院,菲利普·德·兰斯(Philip de Langes) Torino,Corso Duca degli Abruzzi 24,10129,Torino,意大利H工程和信息技术学院,P ecs,P´ECS,P´ECS,匈牙利
本文档旨在设定一种方法来计算产生比消耗能量更多的地区的年度初级能源平衡。在正能量区的设计和评估过程中,这可能是城市的实用工具。根据几个步骤可以生成年度余额的计算方法。首先,需要确定能源和资源。进行了两项分析后,迭代过程和能量平衡的检查将为该地区提供不同的替代方案。为了评估某个地区的积极程度,该余额是按总或不可再生的一级能源条款进行的,因为它比较了不同类型的能源载体并考虑了该地区限制的收益。计算指南遵循在建立城市项目的初始状态下执行的过程。这是一个为期5年的项目,因此,本文档将继续从观察和学到的内容中演变。该方法基于ISO 52000-1(2017)中定义的建筑物的能源绩效评估。
正能量区已成为下一代城市建设的新范式,其中能源完全由可再生能源供应(Brozovsky 等人,2021 年)。空间边界的不同定义仍在讨论中:一个独立的正能量区供应 100% 或更多的自身能源需求,任何多余的能源都会输出到电网(Lindholm 等人,2021 年)。这一概念适用于低密度地区,这些地区有大量可用于可再生能源(主要是太阳能光伏发电)且需求低的区域。在动态正能量区,可以从电网进口和出口能源,但现场可再生能源发电量仍必须高于需求。同样,如果城市密度高,屋顶和外墙的发电面积有限,这个概念就有其局限性。最灵活的定义是虚拟正能量区,可再生能源可以自由进口和出口,但不必在现场生产。这里出现了可再生能源所有权和电力购买协议的问题,以确保建设新的可再生能源来满足地区的需求(Pan 和 Pan,2021 年)。在平衡指标方面还有一些进一步的区分:除了关注剩余可再生能源发电(Derkenbaeva 等人,2022 年)之外,在正能源区定义的某些表述中(即欧盟 Setplan)还将总体碳中和列为优先事项。因此,正能源区必须同时考虑需求方以及供应和存储选项:只有通过将现有建筑改造为高能源标准来降低需求,当地可再生能源才能做出重大贡献。在当今的城市讨论中,密集化和由此产生的需求增加是议程上的重中之重,因为只有密集的城市地区才能提供公共和主动交通,从而实现总体低温室气体排放。交通运输部门向电动汽车的持续转型为低压配电网增加了本地电力负荷,只有通过提高公共交通份额才能减少这种负荷。随着供暖系统的电气化,城市电力需求不断上升,需要仔细分析其演变,以找到能够满足不断变化的需求的供应解决方案(Yuan 等人,2021 年)。然后需要研究可再生能源供应的不同选择,以确定太阳能、风能或废物转化为能源之间的最佳能源组合,并优化所需的存储量。选项范围从短期存储到季节性存储,并且在很大程度上取决于上面讨论的空间边界:对于一个自主的正能量区,存储单元需要增加规模,因为当地需求
我们使用半经典方法研究了通过分子阳离子对电子的激光辅助解离重组的过程。在反应球以外的区域中,对组合激光和库仑领域中的电子运动经过经典处理。在球体内忽略了激光效果,重组概率是从针对无激光过程计算的量子机械横截面获得的。在强度2.09 GW / cm 2和波长22的场中,进行了特定的计算,以进行H + 2的分离重组。8μm。在1 meV高于1 MEV的能量区域中,由于库仑聚焦效果,横截面显着增强。 还研究了由于电子捕获到Rydberg状态而引起的间接过程的影响。 尽管由于领域的影响,rydberg共振被洗净,但它们的影响显着,显着地影响了分离性重组横截面的大小。8μm。在1 meV高于1 MEV的能量区域中,由于库仑聚焦效果,横截面显着增强。还研究了由于电子捕获到Rydberg状态而引起的间接过程的影响。尽管由于领域的影响,rydberg共振被洗净,但它们的影响显着,显着地影响了分离性重组横截面的大小。
Annex 70 Building Energy Epidemiology: Analysis of Real Building Energy Use at Scale: Martin Jakob ( martin.jakob@tep-energy.ch ), TEP Energy Annex 72 Assessing Life Cycle Related Environmental Impacts Caused by Buildings: Rolf Frischknecht ( frischknecht@treeze.ch ), Treeze Annex 75 Cost-effective District Level Building Renovation Strategies with Energy Efficiency and Renewables: Roman Bolliger(roman.bolliger@econcept.ch),Econcept Annex 79以乘员为中心的建筑设计和操作:Arno Schlueter,ETH; Dusan Licina,EPFL; Dolaana Khovalyg,EPFL附件82 Energy柔韧的建筑物,朝着弹性的低碳能源系统:FHNW的Monika Hall;罗马·鲁德尔(Roman Rudel),supsi; Kristina Orehounig,Empa附件83正能量区:Zhang,PSI - 热抽水技术(HPT TCP):Elena-LaviniaNiederhäuser,Stephan Renz(椅子)