用过的橡胶轮胎问题正在成为环境中不断增加的问题。通常以非法方式处理这些。在森林路径,领域或其他不合适的区域中,二手轮胎的处置是可惩罚的,是对人和环境的风险。然而,案件的数量每年增加。这部分是由于缺乏合适的废物轮胎回收选项引起的。重复使用确实发生了,但主要是以降低的形式进行,目前大多数要么被焚化以进行能量回收,要么作为切碎的轮胎,用作道路和运动场中的底物或填料材料。过去已经开发了几种填海技术,例如使用机械,热能和/或化学药品,旨在为废轮胎问题提供更好的解决方案,但是,大多数过程会导致某种形式的橡胶降解,从而将重复使用限制为低价值应用。仅使用微生物和/或酶使用生物技术方法进行贬值,该方法目前有望在新轮胎等高价值应用中重用废橡胶。本综述概述了不同的回收选择的技术发展及其对循环经济的潜在利益。
摘要 :本文介绍并分析了一种新型无化石燃料跨临界储能系统,该系统以二氧化碳为工作流体,在一个闭环中穿梭于两个不同深度的盐水层或洞穴之间,一个是低压储层,另一个是高压储层。采用热能存储和热泵,无需使用外部天然气来加热进入能量回收涡轮机的二氧化碳。我们仔细分析了能量存储和回收过程,以揭示系统的实际效率。我们还基于稳态数学方法,重点介绍了这种无化石燃料跨临界储能系统性能的热力学和敏感性分析。研究发现,无化石燃料跨临界二氧化碳储能系统具有良好的综合热力学性能。其火用效率、往返效率和能量存储效率分别为 67.89%、66% 和 58.41%,每单位存储体积产生的能量为 2.12 kW ⋅ h/m 3 ,火用破坏的主要贡献者是汽轮机再热器,由此我们可以量化性能的提升方式。此外,由于能量存储和回收压力相对较高,低压油藏压力较低,该新型系统表现出良好的性能。
在本论文中,我们研究了节能液压系统。研究重点是移动应用中的线性执行器解决方案,重点是建筑机械。除了能源效率方面,本论文还涉及建筑机械开发中液压系统设计中存在的相互竞争的方面。我们开发了针对不同概念的仿真模型和控件,并考虑了整个机器。根据这项工作,我们开发了几个概念验证演示器。本论文涵盖了三种主要系统拓扑:首先,研究泵控制系统,并构想了一种基于开路泵配置的新概念。特别考虑了多模式功能,以扩大操作范围并有可能缩小组件尺寸。我们开发了仿真模型和控件,并在轮式装载机应用中对系统进行了实验验证。其次,研究了阀控系统中的能量回收可能性。在此类解决方案中,在节流口添加液压马达,用于在负载降低和多功能操作期间回收能量。回收的能量要么暂时使用,要么存储在液压蓄能器中。所提出的解决方案意味着对传统系统的逐步改进,这有时对机器制造商很有吸引力,因为可靠性、安全性和开发方面的不确定性较少
处理当前全球能源危机影响的最有效方法之一是减少能源消耗并依靠能源管理策略。因此,废热/能量回收可能是降低能源成本和环境效应的有用选择。它需要找到一种实用方法来应用任何工程系统的浪费热量,在该热量中,全球热量的百分比过高。在这种情况下,废水是浪费能量的丰富来源,如果回收,可以大大减少全球使用的电量。在此框架内,本研究论文在性能,设计,工具和应用方面对废水回收系统(WWHRS)进行了彻底的分析。此外,它强调了与WWHR相关的关键要素,包括用于废水恢复的文献中使用的废水来源和方法。此外,本文证明了从排水废水对经济上的热量回收的影响,并讨论了使用WWHR的技术障碍。将证明,从废水中恢复热量的可行性可能会大大降低住宅或工业应用的能源消耗成本。此外,用于热恢复系统的主要工具是使用各种类型的热交换器,并且热换热器的选择强烈影响。最后,所有讨论和介绍的研究都表明,WWHR有很大的好处,可以考虑新的住宅建筑。©2023作者。此外,根据文献综述,研究表明,研究热恢复系统的热性能的方法是实验性和/或数值的,在某些情况下,该研究是通过分析进行的。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
使用离散元法分析填充床热能存储中的热棘轮现象 填充床热能存储 (TES) 在能源技术中发挥着重要作用。在能量吸收过程中,热空气从上到下流过 TES 的内容物。在加热过程中,储热介质(散装材料)的膨胀会导致储热罐壁上的应力增加。这些发生的负载将通过离散模型来考虑。此外,有趣的是,在几个加载和卸载过程中负载如何变化(热棘轮现象)。在本文中,将研究如何使用 DEM 方法对这种行为进行建模。关键词:热能存储(TES)、离散元法(DEM)、热棘轮、热应力、校准 1. 引言 在 NEFI(工业新能源)项目过程中,应利用水泥厂约 300-400°C 的废热进行能量回收。为此,必须实施气流填充床热能存储 (TES) [10] 形式的存储。自 2018 年以来,维也纳技术大学工程设计和材料处理系 (KLFT) 与能源系统和热力学研究所 (IET) 合作开展项目,致力于实现这一目标。简而言之,填充床 TES 是装满散装材料的罐 [9]。散装材料用作储热介质。TES 系统最重要的目标是将热能的产生与其使用分离,因为可再生能源可以被邻近的公司使用。加热过程中,储热介质(块状材料)的膨胀会导致储热罐壁上的应力增加。先前的研究结果 [1]、[6]、[7]、[8] 表明,块状材料的接触力增加以及储热罐壁上相关应力的增加会导致损坏(见图 1)。
表S1注意:[1]分别在2023-2030和2023-2050期间达到1.5°C目标的平均年度投资要求分别在2030年和2050年的投资行中显示。近年来所有投资数字均为目前的美元;近年来用于指标的细节是:[2] 2020; [3] 2030年和2050年的净容量添加净容量不包括寿命末期的替换库存; [4] 2022; [5] 2022; [6] 2022; [7] 2022; [8] 2022; [9] 2020; [10] 2021; [11] 2020年 - 不包括非能用途; [12] 2020; [13] 2020; [14]在最终用途,地区供暖,生物燃料和基于生物的创新燃料中需要对可再生能源的未来投资; [15] 2022; [16]近年价值是2010年至2020年之间的平均值; [17]未来对节能和效率的投资包括基于生物的塑料和有机材料,化学和机械回收以及能量回收; [18] 2021; [19] 2020; [20] 2022; [21] 2022; [22] 2022; [23] 2021; [24]绿色氢的份额在2030年为40%; [25]绿色氢的份额在2050年为94%; [26] 2022; [27]在电气层,基础设施,H 2个电台,Bunkering设施和长期存储中所需的未来投资; [28] 2022; [29]包括在天然气加工,氢,其他燃料供应,电力和热量中的CO 2捕获,行业,直接空气捕获运营中的设施,2022年; [30]当前的总捕获对应于燃料供应,2022; [31]2022。ccs/u =碳捕获和存储/使用; BECCS =生物能源,碳捕获和存储; EV =电动汽车; re =可再生能源; yr =年; m 2 =平方米; ej = exajoule; gt = gigatonne。
摘要:电动汽车是指由电动机驱动的汽车,电动机从电池中获取电力,并能从外部电源充电。决定电动汽车行驶里程的最大因素是车内锂离子电池的容量。本文提出了一种实时最优驱动扭矩分配策略,适用于前后轮独立驱动的电动汽车 (EV)。所提出的前轮和后轮最优扭矩分配策略提高了车辆的整体能效,从而增加了电动汽车每个充电周期可实现的行驶里程。扭矩优化的目标是最小化行驶过程中的能量消耗,并最大化制动过程中的再生能量回收。本文提出了一种实时扭矩分配控制系统,该系统可以根据驾驶命令实现恒速行驶、加速、制动和爬坡行驶模式下的驱动-制动扭矩的最优分配。最优扭矩分配确保最小的能量消耗,从而提高电动汽车的能效。通过降低能耗,可以提高每次充电可行驶的里程,从而实现电动汽车的续航里程延长。关键词:续航里程延长、智能自动切换、效率、电池、超级电容器、电动汽车 (EV) I. 引言目前,电动汽车的续航里程平均可以满足大多数国家 80-90% 的大多数人的需求。然而,不买电动汽车最常见的原因是续航里程不够[1]。 CARB 将增程型电动汽车(也称为增程式电动汽车 (EREV) 或增程电池电动汽车 (BEVx))定义为“主要由零排放储能装置供电的汽车,能够以纯电动方式行驶 75 英里以上,同时还配备备用辅助动力装置 (APU),该装置在储能装置完全耗尽之前不会运行[6]。目前,电池是电动汽车 (EV) 的主要电源。电池越大,电动汽车可以行驶的距离越远。为了向牵引电机供电,在普通商用电动汽车中,使用传统的逆变器。电动汽车 (EV) 的电池组是通过将多个锂离子电池串联起来而制成的,通常串联约 100 个电池 [7]。产生用于储存能量的高压 (HV) 组。典型的汽车行程在高效电动汽车 (EV) 的行驶范围内,因为几乎 90% 的日常汽车使用是为了
高铬制革污泥是环境中铬污染的重要来源。作为最广泛使用的鞣制材料,碱式硫酸铬用于将易腐烂的胶原结构转化为不易腐烂的皮革基质(Famielec,2020)。然而,只有50%-60%的铬盐真正用于鞣制过程,其余的随后排入下水道,这不可避免地导致污水处理厂(WWTP)中的铬含量过高(Yang等,2020)。在排入生物处理系统之前,废水先用石灰和硫酸亚铁进行预处理,以去除溶解的铬和其他废化学品。大量沉淀的铬与其他有机沉积物一起作为初级化学污泥排出(Pantazopoulou和Zouboulis,2019)。此类污泥不仅富含不可生物降解的有机物,还富含不同存在形态的铬,增加了其有效处理的难度。随着环境的变化,制革污泥中的铬可能由三价铬转变为六价铬(Alibardi和Cossu,2016),六价铬的毒性是三价铬的10~100倍,且迁移性强、生物活性更高,具有致癌性和生物累积性(Singh等,2021)。高铬制革污泥因具有潜在的毒性,已被许多国家列为危险废物,其处置和资源回收受到严格限制。含铬制革污泥若处置不当会造成二次污染,给制革行业和环境带来巨大挑战(Malaiškien ˙e等,2019)。目前,含铬制革污泥的常见处理方法是焚烧(Kavouras等,2015),产生的灰渣则进行卫生填埋(Alibardi和Cossu,2016)。然而,焚烧过程存在一些固有的缺陷,主要问题包括产生灰烬中重金属的挥发、再分布和浸出潜力引起的慢性和急性毒性(Yu等,2021)。同时,作为一种新兴的污泥处理技术,热解由于其具有同时进行营养物回收( Hossain et al.,2020)、目标能量回收、重金属(HMs)的固定化与环境保护(谢等,2021)。污泥热解可生成高价值的燃料材料和低价的污染物去除生物炭(李等,2019;曾等,2021),可稳定有毒物质,降低其对环境的威胁(王等,2021)。而生物炭中的重金属因其对人类健康和全球环境的潜在不利影响而受到越来越多的关注。研究表明,由于重金属比有机物具有更高的热稳定性,在污泥热解过程中,大多数有毒重金属仍然富集在污泥生物炭中(王等,2022)。重金属的固定和稳定取决于污泥的性质和热解条件。
热泵多年来一直是加热和冷却的有效来源,但是技术的进步现在使它们能够有效地满足寒冷气候中的供暖需求,从而帮助客户减少温室气体排放。实现全州热泵目标并建立低碳未来的市场基础设施,纽约州(“ NYS”)清洁热量全州热泵计划(“ NYS Clean Clean Heat Program”),包括Con Edison的NYS Clean Heat Programe(或以下定义的“定义”)为广泛的客户提供市场开发范围的范围启动市场的范围,从而为市场提供了启动范围的市场。纽约电力公司1与纽约州能源研发局(“ Nyserda”)(“共同效率提供者” 2)之间的合作努力,纽约电力公司1之间的合作努力,旨在为客户,承包商和其他热泵解决方案提供商提供一致的经验和纽约州的商业环境。 纽约州清洁热计划包括一系列倡议,以推动采用高效的电动热泵系统,这些电动热泵系统设计和使用用于空间和水的供暖。 NYS清洁热计划的核心是支持客户采用合格热泵技术的激励措施,其中包括空源热泵(“ ASHP”),空气对水热泵(“ AWHP”),热泵水加热器(“ HPWH”)(“ HPWH”),以及通过促销和PRIC PROVORS和其他泵送者和其他泵送者和其他泵送者和其他泵送者和其他泵送的供应者。纽约电力公司1之间的合作努力,旨在为客户,承包商和其他热泵解决方案提供商提供一致的经验和纽约州的商业环境。纽约州清洁热计划包括一系列倡议,以推动采用高效的电动热泵系统,这些电动热泵系统设计和使用用于空间和水的供暖。NYS清洁热计划的核心是支持客户采用合格热泵技术的激励措施,其中包括空源热泵(“ ASHP”),空气对水热泵(“ AWHP”),热泵水加热器(“ HPWH”)(“ HPWH”),以及通过促销和PRIC PROVORS和其他泵送者和其他泵送者和其他泵送者和其他泵送者和其他泵送的供应者。此外,该程序还为信封改进,热泵控制,热恢复冷水机(“ HRC”)和热泵冷却器(“ HPC”)以及能量回收通风机/热恢复通风器(“ ERV/HRV”)提供激励措施。市场开发工作包括对承包商的培训和资格的支持,确保质量安装的流程以及营销和教育,以帮助客户在期权中理解和选择,并最佳地操作系统。有关中央哈德逊,国家电网,NYSEG/RG&E以及Orange和Rockland在服务领域的激励措施和计划详细信息的信息,请参考适用于这些公用事业的程序手册。3除了通常与NYS Clean Heat计划有关的一些信息之外,本计划手册中的信息(NYS Clean for Con Edison程序手册)也针对Con Edison具有特定的特定,并且在下面特别提供。
EEE G541 配电设备和配置 [3 2 5] 消费者端配电装置的基本配置。变压器类型、规格、性能、保护和尺寸。电缆和绝缘层的类型、电缆参数、载流量和保护。低压开关设备的额定值及其在选择、开关瞬态和清除时间中的应用。保险丝的属性(以载流量为参考)。仪表、仪器变压器及其应用。配电层的电压控制。电能质量功率因数、频率和谐波含量的基本概念 EEE G542 电力电子转换器 [3 2 5] 转换器的重要性在于它是电源和负载之间的接口。DC-DC 转换器:降压、升压和降压-升压配置。ACDC 转换器:单相和三相二极管和晶闸管转换器。晶闸管转换器中的逆变和线路换向逆变器的应用。 DCAC 转换器:单相和三相开关模式电压源逆变器、不同类型的 PWM 操作、多级 VSI 操作、空间矢量调制技术。AC-AC 转换器:晶闸管供电交流负载、循环换流器。矩阵转换器阵列及其作为 DC-DC 和 DC-AC 转换器的操作。EEE G543 功率器件微电子学与选择 [ 3 0 3] 功率器件封装的热特性、R θJC 和 R θCS 的问题、热流及其对器件温度的影响、散热器设计和选择。双层结行为、漂移区的概念、功率二极管的特性。厚膜 BJT 中的基极操作、稳态特性、开启和关闭时间、多级功率达林顿。四层结行为、晶闸管的两个晶体管模型、四层结器件的动态模型。GTO 晶闸管、四层结器件的关闭机制、当前的技术问题。 MOS 的工作原理和特性、功率 MOSFET 的特性和结构。MOSFET 到 IGBT 的发展、技术优势、特性和动态行为。绝缘栅技术的当前技术问题。矩阵转换器简介。EEE G545 电力电子系统控制与仪表 [3 0 3] 参考电力电子转换器的调节和控制问题。反馈转换器模型:基本转换器动态、快速切换、分段线性模型、离散时间模型。DC-DC 转换器的电压模式和电流模式控制、整流器系统的比较器控制、比例和比例积分控制应用。基于线性化的控制设计:传递函数、补偿和滤波、补偿反馈控制系统。滞后控制基础知识以及在 DC-DC 转换器和逆变器中的应用。一般边界控制:边界附近的行为以及合适边界的选择。模糊控制技术的基本思想和性能问题。电力电子电路传感器、速度传感器和扭矩传感器。EEE G552 固态硬盘 [3 2 5] 驱动系统简介:要求、组件和基准;电机理论回顾;电机的电力电子控制:要求和操作问题;感应电机的静态速度控制:交流电源控制器、滑差能量回收、VSI 和 CSI 控制的感应电机;同步电机和相关机器的速度控制;直流电机速度控制问题:整流器和斩波控制器;先进的感应电机驱动控制:矢量控制,