本文讨论了在具有静态均匀磁场 B ∗ 的等离子体中用激光脉冲加速电子。激光脉冲垂直于磁场线传播,其极化选择为 (E 激光 · B ∗ ) = 0。本文重点研究具有可观初始横向动量的电子,这些电子由于强烈的失相,在没有磁场的情况下无法从激光中获得大量能量。结果表明,磁场可以通过旋转这样的电子来引起能量增加,从而使其动量变为向前。能量增益在这个转折点之后仍会持续,在此转折点处失相会降至一个非常小的值。与纯真空加速的情况相反,电子会经历快速的能量增加,通过分析得出的最大能量增益取决于磁场强度和波的相速度。磁场增强的能量在高激光振幅(a 0 ≫ 1)下非常有用,此时与真空中的加速度类似的加速度无法在数十微米的范围内产生高能电子。强磁场有助于在不显著增加相互作用长度的情况下增加 a 0。
摘要:本文介绍了气候反馈内核,称为“能量增益内核”(EGK)。egk允许将净的长波辐射能扰动分开,由普朗克反馈矩阵明确地将单个层的热能发射扰动和热辐射能局部收敛在单个层上的热能扰动扰动,从而导致表面温度的大气层变化 - 对单位强度的响应对单位的响应响应,而在单位强度强迫分别为单位分别为单位分别为单位分别为单位分别为单位分别为单位分别为中心。前者由普朗克反馈矩阵的对角矩阵和后者表示。元素都是正面的,代表了在强大的强迫并在其他层上获得的能量的层上放大的能量扰动,这两种能量都是通过大气中的辐射热耦合实现的 - 表面共同的。将EGK应用于输入能量扰动,无论是由于对外部能量扰动的反应,无论是外部还是内部,例如水蒸气和反照率反馈,都会通过大气表面 - 表面柱中的辐射热摄取来产生其总能量扰动。由于EGK的强度仅取决于气候平均状态,因此提供了一种解决方案,可以有效地客观地将控制气候信息与气候扰动中的气候扰动分开以进行气候反馈研究。鉴于EGK包含关键气候有关平均温度,水蒸气,云和表面压力的均值状态信息,我们设想,EGK在不同气候模型中的EGK多样性可以洞悉为什么在相同的人为绿色房屋气体下的探究中,不同的绿色房屋气体会增加全球平均表面温暖的varying模型。
本文讨论了在具有静态均匀磁场 B ∗ 的等离子体中用激光脉冲加速电子。激光脉冲垂直于磁场线传播,其极化选择为 (E 激光 · B ∗ ) = 0。本文重点研究具有可观初始横向动量的电子,这些电子由于强烈的失相,在没有磁场的情况下无法从激光中获得大量能量。结果表明,磁场可以通过旋转这样的电子来引起能量增加,从而使其动量变为向前。能量增益在这个转折点之后仍会持续,在此转折点处失相会降至一个非常小的值。与纯真空加速的情况相反,电子会经历快速的能量增加,通过分析得出的最大能量增益取决于磁场强度和波的相速度。磁场增强的能量在高激光振幅(a 0 ≫ 1)下非常有用,此时与真空中的加速度类似的加速度无法在数十微米的范围内产生高能电子。强磁场有助于在不显著增加相互作用长度的情况下增加 a 0。
摘要 虽然电阻式随机存取存储器 (RRAM) 如今被视为未来计算的有前途的解决方案,但这些技术在编程电压、开关速度和实现的电阻值方面存在内在的可变性。写入终止 (WT) 电路是解决这些问题的潜在解决方案。然而,以前报道的 WT 电路并没有表现出足够的可靠性。在这项工作中,我们提出了一种工业上可用的 WT 电路,该电路使用根据实际测量校准的 RRAM 模型进行模拟。我们执行了大量 CMOS 和 RRAM 可变性模拟,以提取所提出的 WT 电路的实际性能。最后,我们使用从实际边缘级数据密集型应用中提取的内存痕迹来模拟所提出的 WT 电路的效果。总体而言,我们在位级别展示了 2 × 到 40 × 的能量增益。此外,由于采用了所提出的 WT 电路,我们展示了 1.9 × 到 16.2 × 的能量增益,具体取决于应用程序的内存访问模式。
连续波 (cw) 光子激发电子能量损失和增益光谱 (sEELS 和 sEEGS) 用于对纳米棒天线中光激发局部表面等离子体共振 (LSPR) 模式的近场进行成像。配备纳米操作器和光纤耦合激光二极管的光学传输系统用于同时照射 (扫描) 透射电子显微镜中的等离子体纳米结构。纳米棒长度不断变化,使得 m = 1、2 和 3 LSPR 模式与激光能量共振,并测量这些模式的光激发近场光谱和图像。还研究了各种纳米棒方向以探索延迟效应。光学和电子束模拟用于合理化观察到的模式。如预期的那样,奇数模式在光学上是明亮的,并导致观察到的 sEEG 响应。 m = 2 暗模式不会产生 sEEG 响应,但是,当倾斜到延迟效应起作用时,sEEG 信号就会出现。因此,我们证明了 cw sEEGS 是成像任一奇偶性全套纳米棒等离子体模式近场的有效工具。
本研究调查了领导者和追随者之间的主观能量水平差异对下属一年后能量变化以及以客户为导向的公民行为的影响。我们的时滞模型主要基于交叉模型,还研究了领导者与成员交换的调节作用。对零售业 277 对二元组样本进行的多项式回归和响应面分析结果表明,能量差距的影响是不对称的,与更有活力的领导者配对的追随者一年后会获得能量,而与精力较弱的领导者配对的追随者则会经历能量耗尽。正如预期的那样,高质量的关系可以缓冲能量较低的领导者的减能效应,并增强由更有活力的领导者引发的能量增益。
在光子纳米结构内的激光光的帮助下,电子的加速度代表了微波驱动的加速器的微型替代品。主要优点是,较高的驾驶有助于介电材料的损伤阈值达到10 GV/m。这意味着应达到超过1 GEV/m的加速度梯度。此外,光学加速器的结构大小位于纳米范围内,这意味着可以采用纳米化方法来构建加速器结构。在追求这些目标时,我们展示了一种可扩展的纳米光线性电子加速器,该线性电子加速器通过交替相位效力(APF)方案一致地结合了粒子加速度和横梁限制。它在仅225 nm宽的通道中加速和引导电子在500μm的相当距离内。观察到的最高能量增益为43%,从28.4 KEV到40.7 KEV。我们希望这项工作为纳米光加速器铺平道路。这些片上粒子加速器可能会在医学,工业,材料研究和科学中施加适用的应用。在这次演讲中,我们将提供纳米素化加速器的状态更新。
重力辅助机动已应用于许多太空任务,用于在接近天体后改变航天器太阳中心速度矢量和轨道几何形状,从而节省推进剂消耗。可以利用额外的力量来改进机动,例如航天器与大气相互作用和/或推进系统产生的力;减少飞行时间并减少多次绕过次级天体的需要。然而,这些应用需要改进关键子系统,而这些子系统对于完成任务必不可少。本文对重力辅助的几种组合进行了分类,包括使用推力和空气动力的机动;介绍了这些变化的优点和局限性。分析了在高海拔地区实施低升阻比对航空重力辅助机动的影响,包括有推进力和无推进力。由于金星和火星与行星际任务的相关性、对探索的兴趣以及对其大气的了解,因此模拟了这些机动。在高海拔地区,低升阻比的气动重力辅助机动使金星的转弯角度增加了 10° 以上,火星的转弯角度增加了 2.5°。与重力辅助相比,这种机动使能量增益增加了 15% 以上。从技术成熟度来看,目前的太空技术发展水平使得在短期内应用高海拔气动重力辅助机动成为可能。关键词天体动力学;航天器机动;大气;轨道传播;空气动力;行星际飞行;绕行。
当今世界对清洁能源的需求超过了供应。这使得清洁能源(如聚变)越来越受到决策者、投资者和广大公众的关注。原则上,聚变每千克燃料产生的能量是裂变的四倍,是燃烧石油和煤炭的近四百万倍。目前国际社会对这种清洁能源的承诺水平使我们更接近聚变能源。一个典型的例子是 ITER,它是世界上最大的聚变实验,它联合了来自 35 个国家的科学家,旨在实现自持聚变反应并展示可观的能量增益。建设正在进行中,一旦完成,ITER 有望开启聚变能源发展的下一阶段,示范聚变发电厂(称为 DEMO)旨在首次从聚变中发电。国际原子能机构处于 DEMO 开发的前沿,促进国际协调并分享世界各地项目的最佳实践。国际原子能机构鼓励对 DEMO 的讨论,并推动广泛的国际对话,以克服高度技术挑战并使聚变能成为现实。国际原子能机构出版的科学期刊《核聚变》见证了该组织对聚变研究的承诺。它是世界上历史最悠久、最权威的聚变期刊。该出版物是对之前发行的《聚变物理学》的补充,描述了磁聚变技术的广泛领域,从等离子体加热和电流驱动到聚变中子学和材料和组件,再到真空泵送和燃料,再到氚处理和氚工厂。