ITHIUM-ION电池(LIBS)是为便携式电子和电动汽车提供动力的主要能量存储技术。但是,它们目前的能源密度和成本可能不满足不断增长的市场需求1 - 3。电池500财团提出需要达到500 WH kg-1的细胞级特异性能量,而电动汽车4的包装级成本低于100美元(kWh)-1。因此,探索新的电池化学物质超出了传统的LIB系统,这是必要的,紧急的5、6。表1比较了几种常用的充值电池系统的重量能量密度,相应的驾驶距离和成本,例如铅酸,镍卡达米(NI – CD),镍 - 金属氢化物(NI-MH),Libs,Libs,Advanced Libs and Advanced Libs and Lith-Sulfur(Lith-Sulfur(Libs))。当前的LIB具有150–250 wh kg-1的细胞水平能量密度为电动汽车提供300至600 km的驱动器范围(例如,特斯拉电动汽车中的LIBS具有〜250 WH kg-1的细胞级能量密度为〜250 WH kg-1),可实现500英里驱动器驱动器的频率,可用于合理驱动距离尺寸,以使距离型号均可合理驱动器尺寸尺寸。这是由于相对较低的容量(≤220mAh g-1)和常规锂过渡金属氧化金属(LMO)阴极的重量,这限制了Li Metal-LMO全细胞(未来LIBS)的能量密度几乎不超过500 WH kg-1。由于硫阴极的多电子氧化还原反应,li – s bateries提供了高理论特异性能量为2,567 WH kg-1,而全细胞级别的能量密度为≥600WH kg-1。尽管出色,硫磺7的低成本和丰度,Li – S电池为远程电动汽车8的下一代电池系统提供了巨大的潜力。已经做出了大量的研究工作,以解决LI – S电池中的物质挑战,以增强电化学的表现。这些努力包括使用多孔碳/极性宿主来减轻9-11,三维阴极的多硫化物溶解,以增强电子/离子电导率和可容纳体积的变化12、13,宿主和人造固体电解质对称间相设计,用于保护Li anodes 14、15,以及对电动机,二线材料和现有的16型固定器和现有的固定剂和现有的固定材料和现有的16型固定剂,现有的固定剂和现有材料。
图 2a:极耳冷却测试设置(左)和热成像结果(右)。除了热成像测试外,伦敦帝国理工学院还研究了极耳冷却性能,其研究得出结论,极耳冷却可延长软包电池的使用寿命。虽然这项研究还提出,与不进行任何电池修改的底部冷却相比,极耳冷却并不是最佳的冷却解决方案,但已经进行了模拟并证明,与表面冷却相比,改变极耳部分和集电器厚度可以实现类似或更好的冷却性能。塞拉尼斯公司先进移动卓越中心的工程师与法国 CEA 研究所的热管理模拟部门合作,进行了一项全面的数值研究,旨在实现极耳冷却电池和底部冷却电池的类似冷却行为。底部冷却是当今软包电池的参考,在最新的车辆中可以看到,这些车辆实现了市场上最快的充电速度,例如保时捷 Taycan 或现代 E-GMP 汽车。图 3a 中的图表表示底部冷却电池在 2C 恒定速率下充满电时的参考情况的温升。电池为袋装形式,长 350 毫米,厚 10 毫米,高 100 毫米。边界条件是充电开始时温度为 25°C,电池除极耳所在位置外所有表面均无对流,热管理系统确保温度恒定
Claudiu Bucur博士首席执行官David Jacobs CFO Piersica,Inc。进行访谈:Lynn Fosse,高级编辑CEOCFO杂志CEOCFO:Bucur博士,Bucur博士,Piersica背后的想法是什么?Bucur博士:Piersica的想法是开发一种电池,该电池产生的电池是商用锂离子电池中可用的能量密度的两倍以上。我们提供的产品与商业电池相比,电池中存储的能量要高得多。ceocfo:您弄清楚其他人没有的是什么?Bucur博士:首先,很难将锂离子电池的能量密度加倍。我们已经进入了锂离子电池的商业化30多年,从1990年到2024年,没有人能够使能量密度增加一倍。我们想做的是当今水平的能量密度的两倍以上,因此这将是巨大的增长。我们发现的是,大多数竞争对手都试图在利用现有商业材料的同时提高能量密度。他们从工程步骤开始,而不是从材料开发步骤开始。但是,主要问题是这些现有材料施加的限制非常具有挑战性,主要的材料是这些材料非常重。使用现有材料,制造轻电池很难,即使不是不可能的,这就是高能的含义,即轻电池。piersica通过开发一种新的,高度导电和极轻的材料来构成我们下一代电池的关键组成部分来做到这一点。ceocfo:为什么/您是如何开始研究这种方法的?这是第一步。Bucur博士:在开始Piersica之前,我在电池行业工作了15年,包括在美国和亚洲。 我遇到了该行业目前面临的许多相同问题。 最终,我得出的结论是,为了克服这些挑战,需要一个新的观点。 我离开了OEM并成立了Piersica,以开发一些我认为可以解决能源密度问题的技术方面,并且将是新的,不同的,而且非常有价值。 ceocfo:您今天在哪里? Bucur博士:我们开发了一种非常轻巧的新专有材料。 这种较轻的材料使我们能够制造更轻的电池,从而实现更高的能量。 您可以为存储更多的能量Bucur博士:在开始Piersica之前,我在电池行业工作了15年,包括在美国和亚洲。我遇到了该行业目前面临的许多相同问题。最终,我得出的结论是,为了克服这些挑战,需要一个新的观点。我离开了OEM并成立了Piersica,以开发一些我认为可以解决能源密度问题的技术方面,并且将是新的,不同的,而且非常有价值。ceocfo:您今天在哪里?Bucur博士:我们开发了一种非常轻巧的新专有材料。这种较轻的材料使我们能够制造更轻的电池,从而实现更高的能量。您可以为
主要碱性电池由于其低成本和安全性而被广泛用于便携式电子产品中。这些电池的消耗和处置促使其回收利用了显着的研究。减少碱性电池处置的另一种方法是通过增加其能量密度来延长其寿命。在这项工作中,通过通过多物理学建模确定最佳电极材料的最佳量,可以最大程度地提高AA主要碱电池的能量密度。在comsolMultiphysics®中开发了碱性电池的电化学模型,并用在恒定电阻载荷下获得的排放曲线(即电压与时间)进行了验证。然后对电极厚度进行优化,以最大化电池的能量密度,同时保持其外部尺寸。能量密度相对于电极孔隙率和界面区域的灵敏度。电化学模型能够复制在250 mA恒定电流放电下获得的放电曲线。通过减小锌阳极的厚度,能量密度最大化。但是,这会导致阳极在电流收集器附近溶解,并可能损害电池中的电连续性。增加阳极厚度可防止当前收集器的溶解,但在电池中增加了质量。这项研究的结果可用于开发更长的碱性电池。此外,可以通过考虑热效应或修改以帮助开发可充电碱性电池来改进该模型。
添加剂制造(AM)由于直接制造设施,设计灵活性和有效的交货时间而在许多行业中越来越受欢迎。定向能量沉积(DED)是AM的变体,激光金属沉积(LMD)被视为DED过程,它使用激光作为热源来融化和沉积通过粉末形式的喷嘴喂食的原材料。本文提出了一项研究工作,研究了使用pH 13-8 mo不锈钢粉末沉积的激光金属形式。进行了实验工作,以产生S形的单珠壁,其主要过程参数影响能量密度。通过将能量密度的水平视为低,中和高,讨论了结果。很明显,低能密度的参数不会产生不当或不当的S形壁。但是,高能量密度参数产生相对良好的沉积壁,但是由于沉积过程中的热量积累,壁的几何形式并不稳定。在每个能量密度水平上都可以看到沉积墙上的球。当热能不足以熔化并从移动喷嘴中沉积粉末时,就会发生这种缺陷。
Liming Qin 1 , Guiyan Yang 1 , Dan Li 1 , Kangtai Ou 1 , Hengyu Zheng 1 , Qiang Fu 2 , Youyi Sun 1*
在量子染色体动力学(QCD)中,假定夸克和反夸克之间的颜色非亚伯式场是由于此类局势的不同组分之间的强非线性相互作用而在管中构建的。该管的性质使得在管之外,所有田间,因此能量密度,随着距离而呈指数降低。在这样的管中,有一个纵向的电场连接夸克,并彼此吸引。这是夸克提案的解释。在经典的SU(3)非亚伯利亚Yang-Mills理论中,与其他领域没有耦合,这种解决方案显然不存在。反过来,QCD中的晶格计算表明,确实存在这种非阿贝尔族的配置。当涉及其他领域时,已经存在此类解决方案。例如,当电磁场与Higgs标量线相互作用时,存在具有磁场的通风的试管,即Nielsen和Olesen [1]发现的众所周知的解决方案。非亚伯液管溶液,其力线沿着管轴扭曲,其力线被扭曲。另一个有趣的事实是,这些管子可以存在于Proca理论中。例如,在[3]中,表明存在带有非线性术语的复杂矢量字段支持的引力和非循环Q管,在某种意义上可以模仿非亚伯利亚Yang-Mills理论中的自我相互作用。在[4,5]中,已经证明了与Higgs标量线相连的SU(3)中的管子的存在。在这些论文中,发现了两种类型的管溶液。在第一种类型的试管中,沿着位于±∞的彩色电荷(夸克)产生的管子沿着管子产生的纵向颜色电场有一个纵向颜色的电场。在第二种类型的试管中,沿着管子有一个动力。这种动量的存在显然等于沿着管转移的能量频道的存在。
分别是 a + b + c - 、 a + a + c - 、 a + b + b - 、 a + a + a - 、 a + b - c - 、 a + a - c - 、 a + b - b - 、 a + a - a - 、 a 0 b - b + 和 a 0 b - c + 。 54 , 58 , 59 斯托克斯
记录的版本:此预印本的一个版本于2021年5月11日在自然通讯上发布。请参阅https://doi.org/10.1038/s41467-021-22912-8。
摘要:间歇性和瞬时可再生能源迫切需要发展具有高功率能量密度的本质安全电能存储技术。水系锂离子电池(ALIB)由于其不易燃的特性而成为一种很有前途的集成技术。然而,受阳极材料的限制,它们的能量密度与非水系电池的能量密度存在相当大的差距。在此,首次尝试将 Wadsley-Roth 相铌基氧化物(M-Nb-O)用于水系锂离子阳极。通过与 M-Nb-O 阳极(Zn2Nb34O87)的代表物配对,ALIB 的输出电压、能量密度和功率密度显着增加,长期循环寿命显着提高。单独来看,能量型全电池(NCM811// Zn2Nb34O87)可产生高记录密度能量(191.5 Wh kg −1),平均放电电压高达约 2.25 V,而功率能量型全电池(LiMn2O4//Zn2Nb34O87)在超高粉末密度 16 489 W kg −1 下表现出优异的倍率性能,能量密度高达 30.0 Wh kg −1。