由于直接制造设施、设计灵活性和有效的交付周期,增材制造 (AM) 在许多行业中越来越受欢迎。定向能量沉积 (DED) 是 AM 的一种变体,激光金属沉积 (LMD) 被视为 DED 工艺,它使用激光作为热源来熔化和沉积通过喷嘴以粉末形式送入的原材料。本文介绍了一项研究工作,研究了使用 PH 13-8 Mo 不锈钢粉末的 S 形激光金属沉积部件的形式。进行了实验工作以生产 S 形单珠壁,主要工艺参数影响能量密度。通过将能量密度水平分为低、中、高,讨论了结果。可以清楚地观察到,低能量密度水平参数不会产生或产生不合适的 S 形壁。然而,高能量密度水平参数会产生相对较好的沉积壁,但由于沉积过程中的热量积累,壁的几何形状不稳定。在每个能量密度水平上都可以看到沉积壁上的球化。当没有足够的热能来熔化和沉积来自移动喷嘴的粉末时,就会出现这种缺陷。
我们采用了一个详细的传输模型,并在重离子煤炭中使用逼真的流体动力学来研究炭的各向异性流动,包括定向流,椭圆流和三角流量。J /ψ的定向流(V 1)是由Quark-Gluon等离子体(QGP)旋转引起的速度-ODD初始能量密度引起的。同时,J /ψ的椭圆流(V 2)主要取决于两个因素:核碰撞区域的初始空间能量密度和魅力动力学的热化程度。j /ψ的三角流量来自魅力夸克的三角流,从而从周围的散装培养基中获取各向异性流动,并具有波动的初始能量密度。J /ψ的这些各向异性流(V 1,V 2,V 3)有助于我们理解波动和旋转QGP中魅力和炭的详细演变。
商业锂离子电池自1990年代引入以来的30年来,对我们的社会产生了深远的影响。[1]从在微型电子产品中工作到是电动汽车的核心,锂离子电池的能量状况正在增加,但是在这些成就的背后是艰难的挣扎。commersercial锂离子电池通常使用石墨作为阳极,其理论能力为372 mAh g-1,匹配适用的阴极,通常具有细胞级的能量密度,通常为≈250wh kg-1(≈700wh l-1)。[2,3]通过将硅添加到石墨中,可以进一步提高能量密度,[4],但目前也限制为≈300wh kg -1。使用锂金属阳极对于显着增加电池能量密度至关重要。锂金属在所有可行的阳极材料中都具有低氧化还原电势(与标准氢电解质[SHE]与标准氢电解质[SHE]与标准氢电解质[SHE]与标准氢电解质[SHA]与标准氢电解质[SHE]的)(3860 mAh g -1,3860 mAh g -1,3860 mAh g -1)中的。 [2,5] LI-LMO电池(锂过渡金属氧化物[LMO])可以提供≈440WH kg-1的特异能量。 [2]但是,锂电池需要过多的锂作为阳极,这阻碍了能量密度的增加。 因此,引入了无阳极(可充电)锂金属电池(AFLMB),以帮助任何给定的岩体阴极系统提供最大的能量密度。 AFLMB是一种锂金属电池,在首次电荷期间形成初始锂阳极。 [6–8]。[2,5] LI-LMO电池(锂过渡金属氧化物[LMO])可以提供≈440WH kg-1的特异能量。[2]但是,锂电池需要过多的锂作为阳极,这阻碍了能量密度的增加。因此,引入了无阳极(可充电)锂金属电池(AFLMB),以帮助任何给定的岩体阴极系统提供最大的能量密度。AFLMB是一种锂金属电池,在首次电荷期间形成初始锂阳极。[6–8]更具体地说,从锂化阴极中提取的锂离子被可逆地镀到裸电的收集器(CC)上,作为锂金属,这意味着在阳极与阴极容量比(N/P)中的预储存的锂完全零。基于此构造,AFLMBS比当前基于锂的电池具有多个优点:1)增加体积和重量的能量密度; 2)改善了没有大量锂金属的细胞安全性; 3)简化的制造过程,因为不再需要超薄的锂金属; 4)由于细胞组装过程中没有游离锂金属,改善了日历寿命和安全性; 5)由于缺乏过量的锂金属来补充不可逆的损失,因此对锂金属蝙蝠的电化学性能进行了更现实的评估。但是,就像其他液态锂金属电池一样,液体AFLMB面临着由于周期期间树突状锂的生长而导致的内部短路和灾难性细胞故障的可能性。
摘要 航空航天飞机自1903年问世以来,极大地提高了人类的生活质量,扩展了太空爆炸能力,液体推进剂或燃料是航空航天飞机的主要动力来源。对于喷气燃料而言,其能量密度特性对飞机的航程、载重量和性能起着重要作用。因此,高能量密度(HED)燃料的设计和制备越来越受到世界各地研究人员的关注。本文简要介绍了液体喷气燃料和HED燃料的发展,并展示了HED燃料的未来发展方向。为了进一步提高燃料的能量密度,提出了设计和构建多环和染色分子结构的方法。为了突破碳氢燃料的密度限制,在HED燃料中添加含能纳米颗粒以制备纳米流体或凝胶燃料可能提供一种简便有效的方法来显着提高能量密度。这项工作为先进飞机HED燃料的开发提供了前景。
与LCO相比,镍与钴在结构内的比率可以在相同电压下具有更高的能力,从而可以达到更高的能量密度。这种高能量密度使它们在电动汽车应用中特别有吸引力。自成立以来,NMC阴极的组成已被完善,以追求更高的实用能量密度。新的NMC组成是通过改变组成型过渡金属的比率而创建的,从而将结构推向了更多镍富集。这些组合物包括NMC622(Lini 0.6 MN 0.2 CO 0.2 O 2)和NMC811(Lini 0.8 MN 0.1 CO 0.1 CO 0.1 O 2),这些NMC622(LINI 0.1 CO 0.1 O 2)今天在电池生产中广泛使用。未来的NMC类型材料包括富含锂和锰的阴极材料(LMR-NMC),有望更高的能量密度。由于镍和钴的限制和挥发性供应链,NMC氧化物比LFP型化学物质昂贵,但比LCO便宜。
电池的情况同样令人印象深刻。与大多数模块化技术一样,上线的制造能力越大,电池就越便宜,从而刺激更多需求,进而刺激对制造和创新的进一步投资,产生多米诺骨牌效应,导致价格通缩和能量密度惊人地提高。在过去 30 年里,电池价格下跌了 99%,仅在过去 10 年就下跌了 82% 以上。与此同时,电池密度却增加了 5 倍。电池容量每增加一倍,电池价格就会下降 19%,能量密度就会提高 7%。20