强场物理中许多有趣的实验都需要产生长波长激光脉冲[1-4]。最近,在 1 kHz 或更高重复率下工作的少周期、载波包络锁相、mJ 级短波红外 (SWIR,1.4-3 µ m) 激光器方面取得了进展,推动了水窗口 (282 至 533 eV) 中阿秒 X 射线源的开发[5]。利用中波红外 (MWIR,3-8 µ m) 驱动激光器已经证明了光谱截止超过 1 keV 的高次谐波产生[6]。3.5-5 µ m 大气透射窗口内的高峰值功率 (100 千兆瓦级) 脉冲能够通过克尔透镜效应在空气中自聚焦形成细丝[7,8];这种脉冲是国防应用的理想选择,因为它们可以以极高的精度和最小的衰减对目标造成最大伤害。由于在 MWIR 波长区域工作的增益介质有限,光参量啁啾脉冲放大(OPCPA)成为最佳方法。1 µ m 激光器泵浦的氧化物非线性晶体,如砷酸钛钾(KTA),能够在 3.9 µ m 波长下产生 30 mJ、80 fs、20 Hz 脉冲[9]。2 µ m 泵浦源使基本可能的上限转换效率翻倍,并且可以使用非线性度更大的非氧化物晶体,如 ZnGeP 2(ZGP),d 36 = 75 pm/V [10 – 12]。ZGP 的热导率为 36 W/(m·K),是 KTA 的 20 倍,对于高重复率/高平均功率操作至关重要。在用 1.94 µ m Tm:光纤激光器泵浦时,Ho:YLF 能够将 2 µ m 皮秒脉冲放大到几十毫焦耳[13-15]。Ho 3 +的 5 I 8 和 5 I 7 流形分别包含 13 个和 10 个能级,如图 1 所示[16]。2.05 µ m 脉冲的放大归因于模拟的上激光能级 N 2 (在 5153 cm − 1 处)和下激光能级 N 1 (在 276 cm − 1 处)之间的发射跃迁。由于基态 N 0 (在 0 cm − 1 处)和下激光能级之间的能量差很小,Ho:YLF 被认为是准三能级增益介质。如图 1 所示,相关激光能级的粒子数随温度而变化,因此 Ho:YLF 等准三能级放大器的增益在很大程度上取决于温度。高能皮秒 Ho:YLF 激光器通常基于啁啾脉冲放大 (CPA)。在产生超过 20 mJ 能量的 2 µ m 皮秒 CPA 激光器中,前置放大器的脉冲由功率放大器增强。最终输出能量由输入脉冲能量和增强器的增益决定。最近,在 2016 年 11 月 1 日展示了一种使用再生放大器和两级增强器放大输出 56 mJ 的 Ho:YLF CPA 系统。
量子退火 (QA) 的出现是未来量子计算发展的重要一步,也将极大地促进统计物理和材料科学建模的发展。到目前为止,QA 在这些领域的应用仍然很少,其中包括确定具有长程弹性相互作用的平衡微结构 1 、横向场 Ising 模型中的相变 2 、通过 Shastry-Sutherland 模型研究受挫磁系统的能态 3 以及设计超材料 4 。另一个例子是结合使用量子退火器和玻尔兹曼机来采样自旋玻璃并预测 MoS 2 层的分子动力学数据 5 。更一般地说,由 D-Wave 公司实施的 QA 可以有效地找到离散优化问题的基态配置,在学术界和工业界都有许多应用 6 – 10 。 QA 的概念是在低温下以明确定义的基态初始化系统的哈密顿量,然后平滑地转换能量景观,使其代表所需的优化问题。如果仔细执行这种绝热变换,系统最终会处于目标哈密顿量的基态,因此可以找到优化问题的全局最小值。然而,在实践中,准备、转换和读出过程并不是完全绝热、无噪音和与环境分离的,因此有时会发现能量更高的状态,尤其是与简并态 11 或太小的能隙结合时。因此,对于典型的 QA 应用,需要多次重复和读出来确定真实基态。在本文中,我们证明了该技术的这一缺陷实际上可以转化为优点,因为它可以非常有效地确定有限温度的热力学性质。从材料科学的角度来看,T = 0K 时的基态配置通常只对许多实际应用具有有限的意义。例如,对于铁磁体,所有自旋都排列在基态,而对于有限温度,热涨落会导致有限的关联长度、相变和温度相关的磁化。对此类属性进行统计建模的传统方法是使用蒙特卡罗 (MC) 采样技术,因为由于相空间的巨大规模,通常无法明确计算配分函数。此类计算最突出的方法可能是使用 Metropolis 转移概率生成离散马尔可夫链,这会生成一系列遵循玻尔兹曼统计的配置,因此可以通过更容易地计算这些马尔可夫链上的时间平均值来表达集合平均值 12、13。在实践中,根据玻尔兹曼分布 p ∼ exp ( − β ∆ E ) (其中 β = 1 / k BT ),从一个状态到另一个状态的转变正在发生,其概率取决于两个配置之间的能量差 ∆ E 。通常,这种方法在低温下效率低下,因为新配置的拒绝率非常高,因此在局部最小值中捕获的相空间采样不足,导致对所需热力学性质的预测有噪声。另一种重要的采样策略是由 Wang 和 Landau 开发的,他们使用非马尔可夫算法通过平坦直方图技术提取状态密度,从中可以计算出所有所需的热力学性质 14 。除了这些主要技术之外,Dall 等人还开发了一种在低温下快速采样玻尔兹曼分布的算法。然而,这种算法最适合具有短程相互作用的系统 15 。另一种公平采样基态和
分类为电导体的材料具有有效携带或运输电流的能力,而由于内部电子的移动有限,绝缘子无法这样做。电子流经物质的易于性主要取决于它们可以轻易地经过其原子和原子核的方式。铁和钢等材料是示例性的导体,而玻璃和塑料等物质的电导率较差。价电子在电导传导中的作用不能夸大;这些最外面的电子与他们的父原子松散结合,并且可以相对容易从其位置移开。易于获得或损失电子的无机材料通常显示高电导率,而有机分子由于将它们固定在一起的强共价键而倾向于绝缘。有趣的是,某些材料可能会根据其组成而表现出不同水平的电导率;例如,纯净水是一种绝缘子,但脏水在某种程度上导致电力。添加杂质或与其他元素掺杂可以显着改变材料的电导率。在电导体中,由于普通条件下的高电导率,银是最好的。然而,它对破坏的敏感性和随后降低电导率的氧化物层的形成不可忽视。相反,经常在需要电流控制的应用中使用强大的绝缘子,例如橡胶,玻璃和钻石。某些材料在极低的温度下成为超导体。材料的形状和大小在确定其电导率水平方面也起着至关重要的作用;较厚的碎片通常表现出比较薄的电导性能更好。此外,温度波动会影响电导率水平,而温度通常会导致材料内的电子迁移率提高。大多数材料根据温度和其他因素表现出不同水平的电导率。凉爽的金属通常是好的导体,而热金属的效率往往降低。传导本身有时会改变材料的温度。在导体中,电子自由流动而不会损害原子或引起磨损。但是,移动电子确实会遇到阻力。因此,流经导电材料的电流会加热它们。金属和等离子体通常是好的导体,这是由于其价电子的移动性。绝缘子通常由有机分子组成,主要由牢固的共价键组合在一起,使电子很难流动。掺杂或杂质等因素也会影响电导率,如纯净水是绝缘体,但由于自由浮动离子而导致的盐水。所有材料都可以根据表1。表1:导体,绝缘体和半导体特性铜是一个众所周知的导体,以最小的对立传递电流。橡胶是一种绝缘子,通常用于涂上用于电动工作的工具手柄。van de Graaff在1930年代。需要极高的电压才能迫使橡胶进入传导。石墨,一种碳的形式,用作半导体,限制了给定电压产生的电流量。在本文中,我们探讨了导体,绝缘体和半导体的一些特征。导体导体是一种对电子流(电流)几乎没有反对的材料。由于其电阻较低,因此通过它产生电流所需的能量很少。最好的导体具有最低的电阻,使其非常适合传输电流。一个原子的价壳决定其电气特性,其价值壳电子和单位体积原子的数量影响电导率。绝缘子绝缘子是具有极高电阻的材料,可防止电流流动。例如,电源线上的绝缘材料可防止电流在接触时到达您。一些元素,例如霓虹灯,是天然绝缘体。用于保护技术人员的常见绝缘子包括橡胶,特氟龙和云母等化合物。正如预期的那样,导体和绝缘子具有相反的特性,绝缘子具有完整的价壳,单位体积的原子很少。半导体的任何表现出导体和绝缘子之间中间电导率的元素都可以视为半导体。半导体:当面对明显的电阻时,导体和绝缘子铜之间具有耐药性的材料最小的对立变得显而易见。当原子紧密相互作用时,它们的能级堆在一起。等式1实现了两个主要目的:它使我们能够计算利息并揭示利息价值及其变量之间的关系。例如,等式1说明$ r = \ rho \ frac {l} {a} $,证明电阻与电阻率,长度和与横截面面积成反比成正比。此外,温度由于温度系数而影响导体的电阻率,导体随着温度的升高而升高。回顾问题概述了导体,绝缘体,半导体的定义,并解释了电导率如何由价电子和原子密度确定。电阻率定义为特定材料体积的电阻,通常以CMIL-ω/FT或ω-CM单位测量。导体表现出正温度系数,表明随着温度升高的耐药性增加。这种基本的理解将材料根据电导率的电导率分类为导体,绝缘体和半导体。例如,如果两个原子连接,则与单个原子相比,相邻能级的数量将是两倍。随着越来越多的原子融合在一起,这种模式继续存在,形成了多个层次的集群。在固体中,许多原子会产生大量的水平,但是大多数高能级均融合到连续范围内,除了根本不存在的特定差距。这些没有级别的区域称为带隙。电子占据的最高能量簇被称为价带。这种现象用于保护与保险丝的电路。导体具有部分填充的价带,具有足够的空位,使电子可以在电场下自由移动。相比之下,绝缘子完全填充了其价带,并在其之间留下了很大的差距。这个较大的间隙可防止电子移动,除非有足够的能量越过。半导体在价和传导带之间的差距较小。在室温下,由于热能,价带几乎已经满,导致某些电子转移到传导带中,它们可以在外部电场下自由移动。Valence带中留下的“孔”表现就像正电荷载体。温度较高的材料倾向于增加对电流的抵抗力。例如,5°C的温度升高可提高铜的电阻率2%。相反,由于电子在传导带中的填充水平升高,绝缘体和半导体的电阻率降低,它们可以在外部电场下移动。价和导带之间的能量差会显着影响电导率,较小的间隙导致温度较低的电导率较高。分子由于放射性元件和宇宙射线的辐射而分离为离子,使大气导电中的某些气体产生。电泳根据颗粒在电解溶液中的迁移率分离。欧姆加热会在电流流过电线时,如电线或灯泡所示。电阻器中消散的功率由p = i^2r给出。但是,在某些材料中,由于碰撞而导致的能量损失在低温下消失,表现出超导性。发生这种情况是因为电子会失去对声子的能量,但是在超导体中,通过电子和材料之间的复杂量子机械相互作用来阻止这种能量损失。常用的超导体是一种niobium and Titanium合金,它需要冷却至极低的温度才能表现出其性质。在较高温度下发现超导性能彻底改变了各个领域,从而实现了液氮而不是昂贵的液态氦气。这一突破为电力传输,高速计算等中的应用铺平了道路。12伏汽车电池展示了如何通过化学反应或机械手段来利用电动力。Van de Graaff Generator是Robert J.由于其概念上的简单性,这种类型的粒子加速器已被广泛用于研究亚原子颗粒。该设备通过将正电荷运送到绝缘输送带上的正电荷从基部到导电圆顶的内部,在那里将其移除并迅速移动到外面。带正电荷的圆顶会产生一个电场,该电场排斥额外的正电荷,需要工作以保持传送带的转动。在平衡中,圆顶的电势保持在正值下,电流从圆顶流向地面,并通过在绝缘带上的电荷运输均衡。这个概念是所有电动力来源的基础,在该源中,在单独的位置释放了能量以产生伏特细胞。一个简单的示例涉及将铜和锌线插入柠檬中,从而在它们之间产生1.1伏的电势差。“柠檬电池”本质上是一个令人印象深刻的伏特电池,能够仅产生最小的电力。相比之下,由类似材料制成的铜锌电池可以提供更多的功率。此替代电池具有两种溶液:一种含有硫酸铜,另一种含硫酸锌。氯化钾盐桥通过电气连接两种溶液。两种类型的电池都从铜和锌之间电子结合的差异中得出了能量。能量,从电线中取出游离电子。同时,来自电线的锌原子溶解为带正电荷的锌离子,使电线具有多余的自由电子。这会导致带正电荷的铜线和负电荷的锌线,该锌线被盐桥隔开,该盐桥完成了内部电路。一个12伏铅酸电池由六个伏特电池组成,每个电池串联连接时大约产生大约两个伏特。每个细胞都具有并行连接的正极和负电极,为化学反应提供了较大的表面积。由于材料经历化学转换的速度,电池会递送更大的电流。电池电位为1.68 + 0.36 = 2.04伏。在铅酸电池中,每个伏电池都包含纯海绵状铅和氧化铅的正电极的负电极。将铅和氧化铅溶解在硫酸和水中。在正电极下,反应为PBO2 + SO -4- + 4H + + 2e-→PBSO4 + 2H2O +(1.68 V),而在负末端,它是Pb + SO -4-→PBSO4-→PBSO4 + 2e- +(0.36 V)。通过汽车发生器或外部电源为电池充电时,化学反应会反转。60Ω电阻连接到电动力。字母A,B,C和D是参考点。源将点A保持在电势12伏高于点D,从而导致VA和VD之间的12伏的电势差。由于点A和B通过具有可忽略的电阻的导体连接,因此它们具有相同的电势,并且点C和D具有相同的潜力。因此,整个电阻的电势差也为12伏。可以使用欧姆定律计算流过电阻的电流:i = va -vd / rb。代替给定值,我们得到i = 0.2安培。可以使用等式(22):p = i^2 * R计算热量中消散的功率。插入值,我们得到p = 0.04瓦。当热量来自电动力源时消散的能量。该源在将电荷DQ从点d到点A移动的工作中所做的工作由dw = dq *(va -vd)给出。电池传递的功率是通过将DW除以DT获得的,导致P = 2.4瓦。如果两个电阻串联连接,则等效电阻是个体电阻的总和:rab = r1 + r2。使用R1和R2的给定值,我们获得RAB =7Ω。并行连接两个电阻时,电荷具有从C到D流动的其他路径,从而降低了整体电阻。可以使用等式(20):1/rcd = 1/r1 + 1/r2计算等效电阻的值。代替给定值,我们获得RCD = 1/0.7 =1.43Ω。在阻抗为2欧姆或5欧姆的情况下,值得注意的是,这些方程式可以相对轻松地适应多种电阻。