摘要该文章致力于改善海水淡化太阳能电厂的设计,以更有效,更有效地生产淡化水,这是由于沸腾溶液的密集蒸发,减少对外部环境的能量损失以及不需要连续调整Solar工厂的光线指导方向的需求。在实验中证实了镜头光轴倾斜角度的倾斜角度参数和太阳辐射的发生率向量(确保太阳能电厂的高性能)得到了实验证实。在阳光明媚的天气下,在超过50°C的温度下以及在可变的云酸的温度下,使用配备了额外的热收集器的太阳能收集器将允许在50°C的温度下提供水,这将有助于提高脱盐材料材料的效率。在多云条件下存在热量蓄能器和一层热绝缘材料允许将操作水温保持在33 - 36°C下的4.4倍长4.4倍。
Neel 研究所拥有 Jeol NEOARM,它在光谱学、电场和磁场测量方面提供了卓越的可能性,可以与不同的原位选项相结合(加热、冷却和电偏置已经可用),实验室希望发展其在光谱学以及原位/操作分析(催化、生长、液体介质、电池运行等)方面的活动。NEOARM 配备了冷 FEG,能够在 60 至 200 kV 的电压下运行,配备了 STEM 像差校正器、多个 STEM 探测器,包括一个用于差分相衬的 8 段探测器、广角 EDX 探测器、用于电子能量损失光谱的 GIF 连续光谱仪、用于电子全息的双棱镜、Gatan Oneview 相机、使用 Medipix 3 技术的直接电子探测器、电子束感应电流以及电子束进动。提供多个样品架,可进行断层扫描、倾斜旋转、在氮气和氦气(正在开发中)温度下冷却,以及加热和原位电偏置。
摘要:富 Ge Ge-Sb-Te 化合物具有较高的结晶温度,是未来相变存储器的理想材料,具有广泛的应用前景。本文,我们报道了通过金属有机化学气相沉积生长的自组装富 Ge Ge-Sb-Te/Sb 2 Te 3 核壳纳米线。核心富 Ge Ge-Sb-Te 纳米线通过气相-液相-固相机制自组装,由 Si (100) 和 SiO 2 /Si 基底上的 Au 纳米粒子催化;随后在室温下进行 Sb 2 Te 3 壳的保形过度生长,以实现核壳异质结构。利用扫描电子显微镜、高分辨率透射电子显微镜、X射线衍射、拉曼显微光谱和电子能量损失谱对富Ge Ge-Sb-Te核和富Ge Ge-Sb-Te/Sb 2 Te 3核壳纳米线进行了广泛的表征,以分析其表面形貌、晶体结构、振动特性和元素组成。
DC分销网络在商业权力方面的合格中独立运行,同时通过DC技术在消费者(社区)之间有效地互换了可再生能源。通过启用这些功能,DC分销网络尽管电压下降和停电(BCP测量)仍可以继续稳定的电源。因此,它可以作为下一代电源系统提供。今天的可再生能源和电器倾向于DC,随着PV,存储电池和消费电子的扩散,它们都在其内部组件中生产和消费DC。图1显示了其中一些典型设备。随着直流分配系统的销量增加,预计使用直流功率减少的能量损失将成为使用直流设备(DC负载)的主要驱动力。将来,预计DC分配系统将与交替的当前(AC)分布系统以及客户需求共存。同时,针对DC分布系统广泛使用的主要挑战是关键组件的开发,例如半导体设备,具有更高的功率容量及其成本降低。
摘要 现代电网现在需要先进的解决方案来增加可再生能源、分布式能源资源和对可靠能源日益增长的需求等变化。提高电网效率对于提供可靠性、减少停电机会和提高配电网性能至关重要。实现这些挑战的一种有希望的方法是集成高级配电管理系统。它利用实时、预测分析和自动化来优化电网运营,并改进决策过程。本文对 ADMS 的集成进行了全面研究,通过更好的负载管理、停电管理和电压控制来提高电网效率。除了对所进行的模拟进行详尽介绍外,还深入研究了案例研究,以研究 ADMS 对电网能量损失、恢复时间和灵活性等主要性能指标的影响。结果将非常明显地反映出经济效率的提高,这将为在现代电网中全面使用 ADMS 提供重要论据。将 ADMS 集成到公用事业中可能是迈向智能、自适应和弹性电网的一步。
能源效率是社会以及能源转变的最重要挑战之一。能量转换在电气和电网中都起着关键作用,并且RE搜索集中在开发材料上,以提高这些关键过程中的效率和减轻能量损失。出于上述目的,氧化β-Gallium(β-GA 2 O 3)已成为追求更有效的电力转换系统和电力驱动技术的关键参与者。尽管其相对较低的导热率相对较低,但氧化甘高的带有令人印象深刻的宽带隙(〜4.8 eV),高击穿场(8 mV/cm),Excel借出的电气性能以及潜在的较低的制造成本(与SIC和GAN相比),使其适合于高功率和高电量应用。这些独特的属性使电力电子设备的设计能够以良好的效率,降低的损失和提高的性能设计。基于氧化危的设备有可能革新各种技术领域,包括电动汽车,新型能源系统和电网。
量子电池(QB)利用量子效应来存储和供应能量,这可能超过其经典的对应物。但是,该领域有两个挑战。一个是,环境诱导的破坏性会导致QB的能量损失和衰老,另一个是随着距离的增加,充电器-QB耦合强度的降低会使QB充电效率低下。在这里,我们提出了QB方案,通过将QB和充电器耦合到矩形空心金属波导,实现遥控器。发现,只要在波导中由QB,充电器和电磁环境组成的总系统的能量谱中形成两个结合状态,就可以实现理想的充电。使用破坏性的建设性作用,我们的QB对衰老是不受欢迎的。另外,在不诉诸直接充电器QB相互作用的情况下,我们的方案以远程和无线的充电方式起作用。有效克服了这两个挑战,我们的结果为Reservoir Engineering实现了QB的实践提供了有见地的指南。
实习标题:研究用于电子显微镜的基于里德堡原子电离的脉冲电子源摘要通过将(专利)单能电子源与高性能探测器相结合,我们正在与 ISMO 和 SPEC 实验室合作建造一种独特的电子显微镜,该显微镜能够同时进行空间成像和对所研究表面的振动相互作用进行分析。该 HREELM(高分辨率电子能量损失显微镜)显微镜结合了对表面成像的电子显微镜的特性和电子能量分析仪的特性。因此,应用领域非常广泛,涵盖纳米物理学、纳米化学、光子学和微电子学。为了生产第一个原型,我们必须在实习期间展示我们的脉冲源(分辨率~5 meV)在低能量(10 eV)下的单动力性质,并成功逐像素获取能量谱。因此,实习将包括使用快速多像素探测器(~1ns)通过飞行时间来分析产生的电子源。将测试各种来源:要么直接光电离铯原子射流,要么通过脉冲电场激发和电离它,要么通过在激发原子(称为里德堡原子)之间进行振荡微波传输。所有现象的量子建模也将成为实习的一个重要组成部分,可以作为论文继续进行。通过将(专利)单能电子源与高性能探测器相结合,我们与 ISMO 和 SPEC 实验室合作,建造了一种独特的电子显微镜,能够同时进行空间成像和对所研究表面的振动相互作用进行分析。该 HREELM(高分辨率电子能量损失显微镜)结合了对表面成像的电子显微镜的特性和电子能量分析仪的特性。因此,应用领域非常广泛,涵盖纳米物理学、纳米化学、光子学和微电子学。为了实现第一个原型,我们必须在此阶段展示我们的脉冲源(分辨率~5 meV)在低能量(10 eV)下的单动力学特性,并成功逐像素获取能量谱。因此,该阶段将使用快速(~1ns)多像素探测器通过飞行时间来分析产生的电子源。将测试各种光源:要么直接光电离铯原子束,要么通过脉冲电场激发和电离它,要么通过在激发原子(称为里德堡原子)之间进行振荡微波传输。所有现象的量子建模也将成为实习的一部分,并可在攻读博士学位时继续进行
1。Guatteri,M.,Mai,P.M。,&Beroza,G。C.(2004)。 用于强型地面运动预测的动态破裂模型的伪纳米近似。 美国地震学会的公告,94(6),2051- 2063年。 2。 Graves,R。W.和Pitarka,A。 (2010)。 使用混合方法宽带地面运动模拟。 美国地震学会的公告,100(5a),2095– 2123。 3。 Graves,R。和Pitarka,A。 (2016)。 在粗大断层上进行的运动地面运动模拟,包括3D随机速度扰动的影响。 美国地震学会的公告。 4。 Song,S.-G.,Dalguer,L。A.,&Mai,P.M。(2013)。 具有1分和2分统计的地震源参数的伪动态源建模。 Geophysical Journal International,196(3),1770– 1786年。 5。 Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。 伪动力地面动作模拟中的故障粗糙度。 纯净和应用的地球物理Pageoph,174(9),3419–3450。 6。 Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。 参数偏微分方程的傅立叶神经操作员,2020。 7。 Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Guatteri,M.,Mai,P.M。,&Beroza,G。C.(2004)。用于强型地面运动预测的动态破裂模型的伪纳米近似。美国地震学会的公告,94(6),2051- 2063年。2。Graves,R。W.和Pitarka,A。(2010)。使用混合方法宽带地面运动模拟。美国地震学会的公告,100(5a),2095– 2123。3。Graves,R。和Pitarka,A。(2016)。在粗大断层上进行的运动地面运动模拟,包括3D随机速度扰动的影响。美国地震学会的公告。4。Song,S.-G.,Dalguer,L。A.,&Mai,P.M。(2013)。具有1分和2分统计的地震源参数的伪动态源建模。Geophysical Journal International,196(3),1770– 1786年。5。Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。 伪动力地面动作模拟中的故障粗糙度。 纯净和应用的地球物理Pageoph,174(9),3419–3450。 6。 Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。 参数偏微分方程的傅立叶神经操作员,2020。 7。 Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。伪动力地面动作模拟中的故障粗糙度。纯净和应用的地球物理Pageoph,174(9),3419–3450。6。Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。参数偏微分方程的傅立叶神经操作员,2020。7。Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Andrews,D。J.(2005)。破裂动力学,能量损失在滑动区域之外。地球物理研究杂志,110,B01307。8。9。10。Tinti,E.,Fukuyama,E.,Piatanesi,A。,&Cocco,M。(2005)。 运动源时间函数与地震动力学兼容。 美国地震学会的公告,95,1211–1223。 Mai,P。M.和Beroza,G。C.(2002)。 一个空间随机场模型,以表征地震滑移中的复杂性。 地球物理研究杂志,107(B11),2308。 Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Tinti,E.,Fukuyama,E.,Piatanesi,A。,&Cocco,M。(2005)。运动源时间函数与地震动力学兼容。美国地震学会的公告,95,1211–1223。Mai,P。M.和Beroza,G。C.(2002)。 一个空间随机场模型,以表征地震滑移中的复杂性。 地球物理研究杂志,107(B11),2308。 Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Mai,P。M.和Beroza,G。C.(2002)。一个空间随机场模型,以表征地震滑移中的复杂性。地球物理研究杂志,107(B11),2308。Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。美国地震学会公告200; 95(3):965–980。
ETES 有望成为用于产生低碳工业热能的技术组合的一部分。氢热尚未实现商业化,由于氢气生产过程中的能量损失,预计其成本将比 ETES 高得多。热泵将电能转化为热能的能效比 ETES 高(热泵的效率为 200%-300%,而 ETES 的效率为 90%-95%),因此通常比 ETES 更具成本竞争力。但是,热泵可能需要进行大量的现场改造,而且热泵目前无法达到 200ºC 以上的温度,而超过一半的工业热能需求是 200ºC 以上的温度。3 电锅炉可以提供与目前基于 ETES 的锅炉相同的温度。随着两种技术的进一步发展,未来的电炉有望达到与未来 ETES 系统类似的温度水平(1,000ºC 以上)。然而,热泵、电锅炉和电炉的基载需求不灵活,需要额外投资(无论是在电网还是在现场存储方面),以将可再生能源的间歇性电力转化为连续电力。