DILSHOD KODIROV 1 *,GULMUROD KUSHAKOV 2 1 1 100000 TASHKENT的电源和可再生能源部,乌兹别克斯坦塔什肯季2 Jizzakh Polictechnic Institute,Jizzakh,Jizzakh,Uzbekistan摘要。本文讨论了基于系统的电源方法基于太阳能和水能联合使用的系统的开发。考虑到太阳辐射的功率和时间,水流的量和速度,已经基于预测电力产生的模型开发了一种改进的物理模型。同时,同时确定了使用太阳能和水能在使用太阳能和水能中的份额,具体取决于每天需要每日电力的消费者供应的条件。评估太阳能和水能的综合使用指标以及能源效率的定义是由作者根据可再生能源在电力供应中可再生能源获得的电力份额的增加而开发的,这是通过理论和实验结果的一致性来解释的。1简介大多数区域都基于电力供应。电源系统中传统来源的选择是基于可用能源的能力。同时,电源并不总是完全满足消费者的要求。根据现有文献[1,2,3,4],可再生能源用于电源确实有助于碳氢化合物储量的保护。这些数字逐年继续增加。在我国所有地区,可能可用的能源类型是太阳能和水能。使用它们作为主要电力来源,提高了电力系统的效率。不可再生和可再生能源可以分开或一起使用。可再生能源的开发水平远高于传统能源。在共和国的太阳,风和小水电领域观察到了重大发展。通常,在2022 - 2025年,计划建造10个太阳能和风力发电厂,总容量为3,000兆瓦(见图1)。关于可再生能源的前景已经说了很多。例如,从太阳到我们的行星的辐射能量平均为1.3-1.4 kW/m2。如果我们不考虑从大气中返回的辐射量,则平均1 kW/m2的能量落在地球表面上。这种能量比我们星球当前的能量需求高9,000倍。因此,从可再生能源而不是传统能源实现新添加的能源能力是正确的。*通讯作者:kodirov.dilshod@gmail.com
摘要:二维过渡金属二甲藻元化半导体(2D TMD)的光电和转运性能非常容易受到外部扰动的影响,从而可以通过后体系修饰来精确地定制材料功能。在这里我们表明,纳米级不均匀性称为纳米泡得很不均匀,可用于菌株,而在双层二硫化物中,激发激子转运的介电调节(WSE 2)。我们使用超敏感的空间分辨的光学散射显微镜直接对激子的传输进行成像,这表明介电纳米泡在室温下在漏斗和捕获激子的效率上非常有效,即使明亮的激子的能量受到了忽略的影响。我们的观察结果表明,电介质不均匀性中的激子漏斗是由动量 - 间接(黑暗)激子驱动的,这些激动型(黑暗)激子的能量比明亮的激子对介电扰动更敏感。这些结果揭示了使用深色态能量景观的介电工程进行特殊空间和能量精确的2D半导体中控制激子传输的新途径。主要文本:二维过渡金属二甲藻元化半导体(2D TMD)是范德华的材料,由于其强烈的光 - 含量相互作用,即使在原子上薄的限制下,它们也对纳米级光电构成了巨大的希望。2D TMD的光电特性在很大程度上受其库仑结合的电子孔对(激子)的控制,其结合能相对较大,高达数百个Milli-Electronvolts(MEV),这是由于平面外介电介质筛选而导致的。1–6与自由电荷不同,激子是电荷中性的,因此很难用电子设备中的外部电场来操纵。7–9因此,激子的传输特性在很大程度上取决于随机的扩散运动,没有远程方向性,从而限制了它们作为信息和能量载体的使用。寻找在2D TMD中操纵激子传输的新方法,而不会根本改变其他材料特性,这将产生激子设备,这些设备结合了强烈的光结合,并精确地控制了原子上薄材料中能量和信息流的精确控制。控制2D TMD的特性的一种有吸引力的途径是利用其对菌株,10–21和环境筛查等外在因素的极端敏感性(图1A),5,22-26,实现对光电和运输特性的合成后调节。例如,拉伸应变减少了2D TMD的光学过渡能;因此,16,18,27,28个局部应变区域会产生能量梯度,可以在纳米级低能部位漏洞和捕获激子,该过程被利用以创建长寿命的量子发射器。14,29–33菌株工程很难控制宏观尺度,并且可能引入不良疾病。
学生,电气工程系2,3,4,5 Sveri工程学院,Gopalpur,Pandharpur,Maharashtra,印度印度摘要:在EV和HEV应用中,电池优化增加了。尤其是锂离子电池,由于其高功率和能量密度,因此越来越多地用作绿色技术应用中的储能系统。缺点。多国家充电被认为是最好的选择。使用MATLAB Simulink工具讨论了锂离子电池的状态充电及其用于长电池寿命的充电和排放标准。用于评估和评估充电特性的测量和用于评估充电特性的最新电荷(SOC)是确定电池性能的关键因素。因此,需要准确的社会估计来维护电池并避免过度充电和收费不足。此外,通过这样做,电池的寿命将延长。多国家充电用于需要更高效率的应用。关键字:Matlab,Li-ion,电荷,电动汽车I.简介电池在太阳能系统,EV,HEV和其他智能网格系统中非常有用。“主电池(PB)”和“次级电池(SB)”是两种最常见的电池类型。与铅酸和其他镍金属氢化物电池(SB,尤其是锂离子电池)相比,由于其充电性,高能量与功率比和高功率与能量比,因此高度使用并首选[1]。设计师认为电池行为是为了预期性能和优化能源争端。因此,当构建电路以实现高功率性能和效率时,对锂离子电池充电和排水的了解至关重要。电池行为受许多因素的影响,其中之一是电池的最先进(SOC)。存储的电荷(Q)和流过电池的集成电流(i)会影响电池的充电状态。电池的SOC定义为当前能力与名义容量的比例[2]。由于电池的SOC信息揭示了如何管理其充电/放电法规,因此SOC的准确报告对于混合电动汽车应用至关重要。没有传感器来衡量SOC的价值,因此无法确定它。为了确定SOC的目的,这是由以下方式给出的:C。Park建议一种基于物理测量的方法。soc = 1-(1-1/q∫T0()一些化学技术使用电解质,例如非密封的铅酸电池,并使用其特定的重力和pH。利用电池的放电曲线,采用电压技术将电池电压转换为SOC。但是,电池电压受电池电流和温度的影响。可以通过用更正术语校正电压来解决此问题,该校正项的值与电池电流成正比。为了估算充电,放电和多国家充电状态的SOC,需要基于称为MATLAB/SIMULINK的数学工程的强大工具。这是由数学工程提供的软件/工具,可以帮助特定元素的设计和分析,并建立在Python和C编程语言上。这是一个简单的程序,具有少量用户友好的工具箱,库,仿真块,符号,算术和逻辑操作块以及电池(这是至关重要的)其他功能。此软件包包括SIM Power Systems库中建议的电池模型。基于Shepherd方程的模型在此开发的模型无法辨别电池所描述的性能。因此,需要一个更好的模型才能更准确。使用Simulink库的建筑物
替代能源在全球范围内被许多国家签署了京都协议,优先考虑减少污染物和温室气体的措施。替代能源的使用变得越来越重要,因为它们为减少污染和保存自然资源提供了有希望的解决方案。替代能源替代能源的好处不仅可以防止不必要的副产品,而且还有助于维持我们目前用作能源的许多自然资源。了解可用的替代能源的类型对于理解它们如何帮助保护地球的生态平衡并保存不可再生能源(例如化石燃料)至关重要。替代能源的类型有几种替代能源,包括: *源自有机物的生物量能量,例如木材,森林废物,动物废物,农作物和农作物 *地热能量 *地热能量从地球内部提取的地热能为家庭,温室和行业提供热量的热量,以供型式涡轮增压机燃料驱动式供电驱动式涡轮增压器 *潮汐能和波能预计生物质能量生物量的重要性预计将以最快的可再生能源速度增长,到2020年将增长80%至657亿kW。这部分是由于使用生物量增加,更便宜的生产成本以及改进的技术。地热能及其应用地热能从地球内部提取热量,可用于为房屋,温室和行业提供热水或蒸汽。true 2。A 3。在冰岛首都雷克雅未克(Reykjavik)中,地热能用来加热房屋,而在美国,它用于为企业和行业提供加工热量。水力发电能力能力比任何其他可再生能源产生的电力更多。 但是,估计表明,美国的水力发电将从1999年的3890亿千瓦减少到2020年的2980亿千瓦。 在此处给定文章文本给定文本:在家可持续能源1。 false 4。 false 5。 未给出6。 未给出7。 true 8。 污染物的数量9。 可再生能源10。 有机物11。 地热能12。 (过高的)费用13。 燃料电池能量14。 避免风力涡轮机在特定区域可用于房屋。 小型涡轮机可以在具有足够的风资资源的物业上安装,从而提供了补充太阳能的替代能源。 在有一致风的地区,这种能源选项特别有效,可以极大地促进房屋的能源需求。 能源效率在可持续家庭能源中起着至关重要的作用。 这包括使用高效的设备,改善绝缘材料以及安装诸如LED照明之类的智能系统,LED照明的能量比传统灯泡少,并且持续时间更长。 智能恒温器还可以优化加热和冷却时间表,在没有人回家时减少浪费。 随着技术的进步,新的和创新的解决方案出现了,包括氢燃料电池和先进的电池存储系统。水力发电能力能力比任何其他可再生能源产生的电力更多。但是,估计表明,美国的水力发电将从1999年的3890亿千瓦减少到2020年的2980亿千瓦。在此处给定文章文本给定文本:在家可持续能源1。false 4。false 5。未给出6。未给出7。true 8。污染物的数量9。可再生能源10。有机物11。地热能12。(过高的)费用13。燃料电池能量14。避免风力涡轮机在特定区域可用于房屋。小型涡轮机可以在具有足够的风资资源的物业上安装,从而提供了补充太阳能的替代能源。在有一致风的地区,这种能源选项特别有效,可以极大地促进房屋的能源需求。能源效率在可持续家庭能源中起着至关重要的作用。这包括使用高效的设备,改善绝缘材料以及安装诸如LED照明之类的智能系统,LED照明的能量比传统灯泡少,并且持续时间更长。智能恒温器还可以优化加热和冷却时间表,在没有人回家时减少浪费。随着技术的进步,新的和创新的解决方案出现了,包括氢燃料电池和先进的电池存储系统。这些选项使房主能够减少其碳足迹,并且正在进行的研究旨在使这些技术更有效和易于使用。可持续家庭能源的未来看起来很有希望,重点是所有人的创新和可访问性。在2010年至2019年间,太阳能光伏(PV)能源的成本下降了82%,使可再生能源成为传统电源的竞争替代品。全世界政府已经实施了税收抵免和赠款等激励措施,以鼓励房主投资可持续的能源系统。这些政策不仅降低了前期成本,而且还在绿色能源部门创造就业机会。美国的太阳能投资税收抵免(ITC)有助于推动太阳能采用,使房主可以从联邦税收中扣除其太阳能光伏系统的很大一部分。此外,与可持续能源替代方案相关的长期成本节省是许多房主的令人信服的经济论点。随着能源价格继续上涨,自我生成的可再生能源成为越来越有吸引力的选择。配备了可持续能源系统的房屋也倾向于指挥更高的财产价值。一项研究发现,购房者愿意为拥有寄主太阳能PV Energy Systems的房屋支付15,000美元的平均溢价。此外,可持续替代方案提供的能源独立性为价格波动和供应中断提供了安全感。但是,可持续家庭能源的经济学因当地气候,能源价格和监管环境等因素而异。随着技术的进步,创新的模型正在出现,以使可再生能源更容易获得,例如社区太阳能项目和融资选择,例如电力购买协议(PPA)和租赁。总而言之,可持续能源替代品的经济学越来越有利,包括节省成本,增加财产价值和能源独立性在内的收益。在技术进步,支持政策和不断变化的市场动态的推动下,朝着更实惠和经济可行的可持续家庭能源解决方案的趋势似乎将继续下去,并有望为房主带来环境和财务利益。问题14-19:a)根据通道,推动可持续家庭能源采用的主要经济因素之一是可再生技术的成本下降。新兴技术正在破坏太阳能电池市场,钙钛矿细胞显示出更高效率率和较低生产成本的巨大潜力。这些新材料取得了显着的进步,近年来与传统的硅细胞媲美。perovskites的灵活性还为整合到建筑材料中,使整个建筑物能够产生能源。AI驱动的智能家庭能源管理系统正在越来越复杂,使用机器学习算法来优化能源使用和存储。储能技术正在迅速发展,固态电池有望提高能量密度和改进的安全概况。热电发生器可以收集废热或使用地热梯度产生连续的功率。流量电池正在开发用于更长的持续存储空间,有可能提供数天或几周的电源。区块链技术正在实现点对点能源交易,使房主可以直接向邻居或返回网格出售多余的能源。热量储能系统正在发展,使用相变材料比传统方法更有效地存储能量。物联网(IoT)在整合和优化家庭能源系统,提供前所未有的数据和控制水平。这种连通性可实现有效的能源利用,并允许创建虚拟发电厂,协调家庭能源系统以提供网格服务。在此处给出的文字:光伏窗户甚至太阳立面变得越来越有效,从而使无缝集成到建筑设计中。正在探索将有机物转换为电力的新型能源,例如将有机物转换为电力的微生物燃料电池,以用于废水处理和同时产生能源。可持续家庭能源的前沿也扩展到微电网,将多余的能量分配回电网。高级技术包括具有较高理论效率限制的钙钛矿太阳能电池,可预测能量使用模式并优化分布的AI驱动系统以及可实现点对点能量交易的区块链技术。但是,随着房屋变得更加联系,这些技术进步会带来新的挑战,例如网络安全问题。确保能源数据的隐私和安全性至关重要。这些技术的环境影响,尤其是物质采购和寿命处置,也需要关注。总而言之,可持续家庭能源的前沿是广阔而迅速发展的,有望将房屋转变为高效,聪明和可持续的能源枢纽。随着研究的继续和技术的成熟,它们具有减少住宅碳足迹的潜力,同时赋予了具有更大能源独立性和控制力的房主。物联网家庭能源系统应用程序选项包括监视设备和创建虚拟发电厂以及其他选择。家庭可持续能源技术的进步面临诸如网络安全问题之类的挑战。可持续能源的技术前沿,用于迅速通过太阳能电池和区块链技术等创新迅速发展到家庭能源管理系统中。诸如分散的能源系统之类的概念也通过技术进步增强了消费者的能源。正在开发用于电气存储的材料,从而可以在相变时吸收和释放能量。
特斯拉在其型号和X型号中很大程度上依赖于Panasonic的18650锂离子电池,利用圆柱电池可提供增强的冷却能力。此外,他们还引入了更高级的电池类型,例如2170和4680个电池,它们具有提高的性能和效率。这些进步在支持特斯拉的电动汽车,尤其是4680牢房中发挥着关键作用,该电动汽车于2020年推出,该电动汽车具有提高的能量密度,更低的成本和提高的生产效率。这项创新与特斯拉的目标保持一致,即以降低的价格实现更高的性能和批量生产电池。通过完善其电池电池技术,特斯拉试图提高车辆范围,同时最大程度地减少费用。对于那些对特斯拉车辆背后的技术感兴趣的人,了解电池电池的各种类型和模型至关重要。此知识为对这些电池电池的影响如何影响特斯拉的整体性能,可持续性工作以及EV技术的未来创新奠定了基础。特斯拉的新电池电池的直径为46mm,高度为80mm,旨在提高能量密度,同时降低生产复杂性。这些较大的单元于2020年宣布,旨在提高车辆性能并降低制造成本。该公司声称他们将提高设计灵活性和生产效率。相比之下,特斯拉汽车中使用的18650和2170电池具有不同的尺寸:18650的18mm x 65mm和21mm x 70mm的2170毫米。这些电池之间的关键差异在于尺寸,容量和能量输出。根据特斯拉的文档,这些尺寸满足了能量密度和空间优化需求的不同。2170电池提供更好的能量密度,在3型和Y型Y型等车辆中,每次充电范围更长。例如,2170的能量比18650的能量高约5-10%,从而导致电动汽车的效率和范围更高。行业专家认为,这种转变可能会降低成本并增加消费者对电动汽车的可访问性。特斯拉对NCA(镍铜铝)和LFP(铁磷酸锂)电池的使用在其车辆中具有不同的目的,提供了不同的性能特征。公司投资于新技术和制造技术,能源顾问的建议包括探索固态电池作为将来的替代品。NCA和LFP电池具有不同的特征。NCA电池以高能量密度脱颖而出,达到250 WH/kg左右,这使特斯拉的车辆可以单一充电行驶更长的距离。它们的出色功率性能使它们适合快速加速和速度。另一方面,LFP电池由于其出色的热稳定性和在较高温度下有效运行的能力而优先考虑安全性和寿命。他们还提供3500多个电荷周期的寿命,从而降低了替代成本和环境影响。LFP电池的成本效益使特斯拉能够在更实惠的型号和型号Y.4680电池的进步显示了电池技术的重大进展。此外,LFP电池不含钴,与负面的采矿实践和环境降解有关,从长远来看,它们是更可持续的选择。特斯拉的最新电池型号4680引入了一些创新,以提高性能和效率。这些包括较大的单元大小,从而增加了储能容量; Tabless Design,通过删除内部标签并降低内部阻力来简化制造;通过新的化学反应改善了能量密度,从而导致电池较轻和更有效的能源使用;由于优化的制造工艺而降低了生产成本;并增强了热管理以提高安全性。较大的电池尺寸增加了整体能量输出,并且可以单一电荷导致电动汽车的更长范围。曲目设计改善了电流的流动,从而增加了16%的范围和增强的安全性。更高的能量密度可实现更有效的能源使用和更轻的电池。特斯拉通过将不同的电池类型整合到各种车辆模型中,展示了他们对创新和环境责任的承诺,而专注于优化性能,成本和可持续性。通过利用这些技术,特斯拉可以迎合各种细分市场,同时解决与电动汽车范围和可持续性有关的问题。特斯拉的先进电池技术专注于优化的制造工艺,包括自动化和材料采购。这种方法可以将电池成本降低多达50%,从而使电动汽车更负担得起的消费者。该公司的4680电池具有增强的热管理,可保持性能和安全性最佳的工作温度。正如M. Lindholm的2022年研究中所报道的那样,这项创新可以延长电池寿命并最大程度地减少过热风险。4680电池电池的设计还增强了车辆的结构完整性,集成到框架中以节省重量并提高安全性。特斯拉的方法有可能重新考虑车辆架构,优先考虑安全性而不会损害性能。这将4680电池定位为EV技术的重大进步,促进采用的增加并增强驾驶体验。特斯拉选择锂离子电池电池会影响车辆性能,为更长的范围和快速加速提供高能量密度。有效的电池管理系统优化了电池性能和寿命,确保安全的操作条件和有效的充电时间。创新的设计,例如圆柱结构,提供了结构支持和有效的散热,对于在苛刻条件下保持性能至关重要。总而言之,特斯拉对电池电池的选择会通过能量密度,放电速率,电池管理和创新设计影响车辆性能,从而有助于改善范围,快速加速和增强的驾驶体验。NCA电池比NCM电池具有更高的能量密度,使特斯拉车辆单一充电更远。根据ICCT的研究,NCA电池可提供比类似NCM电池多高达10%的范围。这意味着配备了NCA电池的车辆可以达到更长的范围并减少充电时间。NCA电池还表现出改善的热稳定性,从而降低了过热和热失控事件的风险。电池安全计划发现,与在类似条件下的NCM电池相比,NCA电池的热失控事件发生率较低。这种增强的安全性概况有助于更好的消费者信任。此外,NCA电池的循环寿命比NCM电池更长,在发生重大降解之前,会转化为更多的充电和放电周期。根据Argonne国家实验室的说法,NCA电池可以持续约300个循环,而不是NCM电池。这意味着带有NCA电池的特斯拉车需要更少的更换,从而降低了车主的长期成本。此外,NCA电池往往比NCM电池轻,从而提高性能和能源效率。减轻车辆重量通常会导致提高加速度和敏捷性。但是,由于其组成所需的钴和铝的成本高,有时使用NCA化学的使用可能更昂贵。然而,基准矿物情报的一项研究发现,尽管NCM电池可能会降低前期成本,但NCA电池由于其寿命和效率而节省了汽车寿命的资金。总而言之,NCA电池为特斯拉车提供了明显的好处,包括更高的能量密度,改善的热稳定性,增强的寿命和减轻重量。虽然在成本和特定用途方案方面进行了权衡,但NCA电池的优势使它们成为电动汽车的吸引人选择。LFP Tech对特斯拉的影响混合了一袋 - 与其他电池相比,它降低了范围,但使其更安全,更实惠。在安全性方面,LFP电池较不容易过热,并且具有较低的热失控风险,这可以节省特斯拉的诉讼。此外,他们收取的速度更快而不会损坏,从而使EV所有权更加方便。LFP技术也可以提高寿命 - 这些电池在失去容量之前可以持续2000多个周期,而传统的锂离子液在大约1000个周期后开始降解。但是,这是以减少范围的成本-Tesla的LFP型号通常提供的能量密度低于其同行。但从好的方面来说,LFP Tech的生产价格更便宜,因为它使用了更实惠的原材料,这可能会使电动汽车更容易被消费者使用。这些材料的丰度和可持续性还确保了特斯拉的稳定供应链。特斯拉在其模型中利用不同的电池电池,包括来自各种供应商的圆柱形和棱镜细胞。公司的电池选择会影响性能,成本效率和生产可扩展性。特斯拉模型S和X模型使用18650圆柱形细胞,在能量密度和重量之间提供平衡,这可以使远距离旅行由于其容量而实现。相反,特斯拉模型3和Y模型采用2170个圆柱细胞,从而在18650年的细胞中提供了提高的能量密度和效率。此升级提高了能源输出,从而提高了性能和范围。Tesla Cybertruck将使用4680个细胞,旨在提高生产效率和降低成本。这些较大的细胞可能会显着降低每公斤小时的成本,从而可以更好地定价。第二代特斯拉跑车还将结合4680个电池,旨在优化性能并迅速加速车辆高速。Tesla半岛使用2170个圆柱形细胞,旨在满足重量运输的能源需求,并确保长期用于商业用途。总而言之,特斯拉的电池类型反映了性能,技术进步和生产效率的平衡。未来的模型有望在电池技术方面进一步进步,可以重新定义电动汽车功能。特斯拉的电池电池的进步,尤其是2170格式,提供了提高的能量密度,从而增强了范围和性能。这项新技术已集成到Model S,X和最近的模型中。尽管这些车辆之间的电池布局有重叠,但容量由于尺寸和预期使用而有所不同。例如,Model 3具有紧凑的设计,可容纳较小的包装,而模型Y可容纳额外的重量,较大容量范围为82 kWh。这两种设计都结合了有效的空间布置,但符合独特的性能目标。特斯拉在其Model 3和模型Y电池配置中的重点是高能密度细胞。具体来说,2170格式可实现更好的热管理,使其适用于尖端的电动汽车。此外,最近的更新使特斯拉根据车辆要求采用了不同的化学成分。预计特斯拉电池电池技术的未来发展将带来效率,可持续性和制造过程的显着提高。关键的进步包括能量密度提高,寿命提高,可持续性提高,生产成本降低,固态电池的开发,回收创新以及供应链的垂直整合。这些增强功能将使电动汽车能够在不增加重量,延长车辆寿命,降低环境影响,降低电池制造成本的情况下行驶更长的距离,并有可能使用固态电池彻底改变该行业。有效的回收系统还可以收回高达EV电池中使用的锂,钴和镍的95%。特斯拉的电池技术进步正在通过提高性能,可持续性和负担能力来改变电动汽车市场。该公司专注于提高电池效率,能量密度和生产可伸缩性,导致车辆可以单次充电,从而解决范围焦虑症的问题。此外,特斯拉在电池制造过程中的创新降低了生产成本,使公司能够提供更具竞争力的车辆。这种转变鼓励其他汽车制造商投资类似的技术,从而推动汽车行业的更广泛的电气化趋势。此外,特斯拉在电池研究中的投资导致了新的电池化学成分的发展,例如镍,磷酸锂(LFP)以及其他改善性能和安全性的材料。这些进步在延长电池寿命的同时增强了驾驶体验,使电动汽车对消费者更具吸引力。总体而言,特斯拉的电池技术改进是推动电动汽车的效率,负担能力和性能提高。特斯拉已经进化了其电池电池技术,以优化电动汽车。该公司始于2170型圆柱形细胞,最初是由松下在内华达州的Gigafactory 1生产的。后来,LG Chem的LG Energy溶液在中国为特斯拉的吉加上海植物产生相似细胞而加入了这种类型。最近,最大的圆柱细胞格式,4680型,进入市场,物理上的五倍,是其前身的五倍,可以进一步优化和新技术。然而,这种增加构成了生产挑战,促使特斯拉开始在加利福尼亚和德克萨斯州的内部开发和生产,同时鼓励像松下这样的供应商加速他们的努力。除了圆柱形细胞外,特斯拉还使用CATL提供的棱镜LFP电池,截至Q1 2022年,所有Tesla汽车的几乎占一半。这些LFP电池专为入门级型号和储能系统而设计,提供了一种具有成本效益的选项。特斯拉的牵引力电池是锂离子,但它们在阴极化学方面有所不同,具有三种主要类型:NCA,NCM和LFP。高能密度类型(例如NCA和NCM)用于远程特斯拉汽车,而较便宜的LFP适用于入门级模型和储能系统。在其2021年的影响报告中,特斯拉概述了使阴极战略多样化的计划,包括增加镍含量和减少NCA和NCM电池中的钴。这将降低成本并提高能量密度,从而导致电动汽车的范围增加。特斯拉计划在由于电池生产增长而增加的钴需求中,特斯拉的阴极战略将继续发展,该公司旨在推进低成本和高性能电池的多元化方法,这将使阴极战略多样化。此举旨在解决车辆和储能产品的各个市场领域,同时根据原材料的可用性和定价提供未来的灵活性。随着电池生产的增长,特斯拉的钴需求也随之增长,由于预测电池生产的预测超过了每个单元的总体钴降低速率,因此预计将增加。但是,必须注意,阴极并不是电池的唯一元素,并且阳极和电解质材料的持续改进。近年来,特斯拉的主要电池供应商从松下转变为LG Energy溶液和CATL的组合。该公司还开始了自己的电池生产,重点是具有未公开化学的高能密集的4680型细胞。供应商和细胞类型的多元化反映了不断发展的电池格局。Currently, several key players contribute to Tesla's battery supply chain: - Panasonic: 1865-type NCA cells primarily used in Model S/Model X - LG Energy Solution: 2170-type NCM cells mainly used in Model 3/Model Y production in China and the US - CATL: Prismatic LFP cells widely used in entry-level Model 3/Model Y globally - Tesla: The company's California-based facility produces 4680型细胞具有未公开的化学物质,主要用于德克萨斯州制造的Y