在 SA 中,固体结构的每个状态都对应一个适用的问题解决方案。状态的能量是评估解决方案的成本函数值。最小能量的状态代表具有最佳成本函数值的最优解决方案。SA 是一种具有迭代改进的随机算法。每个重复步骤都包括将当前解决方案更改为新解决方案。此操作称为移动到邻域。状态的当前温度决定了新解决方案的接受概率。温度更新从最高温度到最低温度进行安排,其中较高温度下的接受概率高于较低温度下的接受概率。如果温度快速下降,则称为模拟淬火而不是模拟退火。SA 和模拟淬火之间的主要区别在于用于温度调度的参数。在 SA 中,需要以较慢的速率降低温度才能达到绝对最小能量状态。
在本报告中,我们描述了在 NeurIPS 2021 上举办的开放催化剂挑战赛,该挑战赛的重点是使用机器学习 (ML) 来加速寻找可以驱动将可再生能源转化为可储存形式的反应的低成本催化剂。具体来说,挑战赛要求参与者开发用于松弛能量预测的 ML 方法,即给定吸附质-催化剂系统的原子位置,目标是预测系统松弛或最低能量状态的能量。为了在这项任务上表现出色,ML 方法需要近似密度泛函理论 (DFT) 中的量子力学计算。通过对这些进行准确建模,可以估计催化剂对化学反应总体速率的影响;这是筛选潜在电催化剂材料的关键因素。挑战赛鼓励整个社区在这项任务上取得进展,获胜方法将直接松弛能量预测相对于之前的最先进水平提高了约 15%。
本文讨论了微电网中多电池储能系统 (MBESS) 分布式通信信道面临的拒绝服务攻击 (DoS) 挑战。值得注意的是,DoS 攻击可能会阻止代理之间共享信息,方法是停止传输数据、使设备处于危险之中并干扰通信网络。因此,引入了基于共识的控制策略,该策略具有电池存储机制的功率和能量状态反馈,通过在传统共识框架中引入自适应系数来最大限度地减少 DoS 攻击的影响。该框架提出了一种分布式弹性有限时间二次控制方案,以便在保持单个 BESS 的充电状态 (SoC) 保持在安全范围内的同时,实现 BESS 的直流母线电压调节、有功功率共享和能量水平平衡。假设在任何控制瞬态时间都可以满足操作约束。此外,理论分析用于明确证明 DoS 攻击长度对控制算法收敛时间的影响。此外,在 Matlab/Simulink 中进行了模拟研究,通过三个不同的案例研究验证了所提出的模型,并进行了基于 OPAL-RT 的实时验证。
摘要 — 在本研究中,我们研究了双栅极反馈场效应晶体管 (FBFET) 器件的温度相关行为,该器件在一定温度范围 (300 K 至 400 K) 内表现出陡峭的开关特性。我们使用技术计算机辅助设计 (TCAD) 模拟分析温度特性。FBFET 是在正反馈回路中工作的半导体器件,其中通道区域中的电子和空穴调节势垒和壁的能量状态。FBFET 表现出出色的亚阈值摆幅和高开/关比,这归因于正反馈现象,从而产生理想的开关特性。在模拟结果中,观察到随着温度的升高,导通电流 (I ON )、关断电流 (I OFF ) 和导通电压 (V ON ) 均增加,而开/关电流比降低。此外,通过调节固定栅极电压可以维持高温下的操作。通过模拟结果,我们定性地研究了 FBFET 中各种器件参数随温度变化的变化,并进行了详细讨论。
基础地面飞行员培训 这部分培训将侧重于“简单”飞机(单引擎、基本仪表和自动化)和 VFR 操作(本地和越野飞行)。培训练习将采用模拟器训练(模拟飞机)和真实训练相结合的方式进行。无论培训类型如何,机上飞行员都将是真正的飞行员。 GCS 硬件和软件的操作 熟悉飞机类型、系统和仪器 与飞机建立通信和遥测链接并检查其完整性 飞行前规划(天气、航行通告、飞行计划、燃料、质量和平衡、起飞性能等) 根据 GCS 数据和飞行员通信监控飞机的飞行路径(位置、轨迹、能量状态等) 根据 GCS 数据和飞行员通信监控飞机的系统(燃料、电气等) 使用 GCS 监视工具监控飞行路径上的其他运行因素(天气、交通、地形等) 监控机上飞行员并交叉检查其操作 与机上飞行员通信并共享信息(例如,天气更新、位置报告等)
以普朗克时间(tp)为终点。 复杂量子系统 R1:包括比基本粒子更大更复杂但仍然主要受量子力学原理支配的系统:o 尺度:从原子到分子尺度。o 实体:包括原子、分子和量子点、纳米粒子等小量子系统。o 框架内容:原子和分子级别的视觉表示。o 相互作用:以量子力学相互作用为主导,经典物理开始在更大的系统中发挥作用。o 信息处理:受系统的能量状态和复杂性的影响,导致帧速率比 R0 慢。 宏观现实 R2:包含经典宏观物体,其中量子效应通常可以忽略不计,特殊条件除外(例如超导、量子计算):o 尺度:从微观到天文,包括细胞、生物和天体。 o 实体:包括生物体、日常物体和大型结构等宏观实体。o 框架内容:宏观层面的视觉和其他感官表征。
摘要:几种技术,计算和经济障碍已导致减少基于可再生能源的发电量,尤其是在渗透率较高的系统中。考虑到减少能量的空间和时间分布,移动电池能量存储(MBE)可以应付此问题。因此,提出了一种新的操作模型,以最佳的使用风和光伏(PV)资源的分配网络中的MBE。由于公交电压,馈线超负荷和电力过量,网络经历了减少情况。MBES是一个压实在容器中的卡车安装电池系统。提出的模型旨在确定MBE的最佳时空和功率 - 能量状态,以达到最小的缩减比率。该模型考虑了MBE的运输时间和成本,同时建模了主动和反应性功率交换。该模型是线性的,没有收敛性和最佳问题,适用于现实生活中的大型网络,并且可以轻松地集成到商业分销管理软件中。在测试系统上的实现结果证明了其功能,可以在所有削减模式和场景下恢复风能和PV资源的相当大的能量份额。
摘要:本文提出了一种分层深度强化学习 (DRL) 方法,用于智能家电和分布式能源 (DER)(包括储能系统 (ESS) 和电动汽车 (EV))的能源消耗调度。与基于离散动作空间的 Q 学习算法相比,该方法的新颖之处在于,使用基于参与者-评论家的 DRL 方法在连续动作空间中调度家用电器和 DER 的能源消耗。为此,提出了一个两级 DRL 框架,其中根据消费者偏好的家电调度和舒适度在第一级调度家用电器,而使用第一级的最优解以及消费者环境特征在第二级计算 ESS 和 EV 的充电和放电计划。在分时定价下,在一个有空调、洗衣机、屋顶太阳能光伏系统、ESS 和 EV 的单个家庭中进行了模拟研究。不同天气条件、工作日/周末和电动汽车驾驶模式下的数值示例证实了所提出方法在电力总成本、储能系统和电动汽车的能量状态以及消费者偏好方面的有效性。
从氧化磷酸化(OXPHOS)到糖酵解的代谢转移(称为Warburg效应)是许多癌症的特征。它使癌细胞在低氧肿瘤微环境中具有生存优势,并保护它们免受氧化损伤和凋亡的细胞毒性作用。这种代谢转移的主要调节剂是丙酮酸脱氢酶复合物和丙酮酸脱氢酶激酶激酶(PDK)同工型1-4。已知PDK在几种癌症中过表达,并且与不良的预后和耐药性有关。虽然PDK1 - 3的表达是组织特定的,但PDK4表达取决于整个生物体的能量状态。与其他PDK同工型相比,不仅是致癌性,而且还报道了PDK4的肿瘤抑制功能。在肿瘤中拟合高的肿瘤和高脂肪酸合成,PDK4可以具有保护作用。前列腺癌是男性最常见的癌症的情况,使PDK4成为有趣的治疗靶点。大多数工作都集中在具有高糖酵解活性的肿瘤中的PDK上,但很少研究PDK4具有保护性并且非常需要的情况。
用于异常姿态恢复的合成视觉系统商用飞机驾驶舱显示技术 Lawrence (Lance) J. Prinzel III、Kyle E. Ellis、Jarvis (Trey) J. Arthur、Stephanie N. Nicholas 美国国家航空航天局兰利研究中心 弗吉尼亚州汉普顿 Daniel Kiggins 上尉 美国国家航空航天研究所 弗吉尼亚州汉普顿 一项针对全球 18 起失控事故和事件的商业航空安全小组 (CAST) 研究确定,在其中 17 起事件中,缺乏外部视觉参考与机组人员失去姿态意识或能量状态意识有关。因此,CAST 建议开发和实施虚拟日间视觉气象条件 (VMC) 显示系统,例如合成视觉系统,该系统可以促进机组人员在类似于日间 VMC 环境中的姿态意识。本文介绍了高保真大型运输飞机模拟实验的结果,该实验评估了虚拟日间 VMC 显示器和“背景姿态指示器”概念,以帮助飞行员从异常姿态中恢复。12 名商业航空公司飞行员进行了多次异常姿态恢复,并收集了定量和定性相关指标。描述了该 CAST 计划和 NASA“飞机状态意识技术”研究项目下的实验结果和未来研究方向。最近的事故和事件数据表明,运输类飞机的空间定向障碍 (SD) 和能量损失状态意识 (LESA) 正在成为所有国内和国际运营中日益普遍的安全问题 (Bateman, 2010)。SD 是指对飞机姿态的错误感知,可直接导致失控 (LOC) 事件并导致事故或事件。LESA 的典型特征是无法监控或理解能量状态指示(例如空速、高度、垂直速度、指令推力),从而无法准确预测维持安全飞行的能力。LESA 的主要后果是飞机失速。CAST 对 18 起失控事故的研究表明,在其中 17 起事件中,缺乏外部视觉参考(即黑暗、仪表气象条件或两者兼有)与机组人员失去姿态意识或能量状态意识有关。虚拟日间 VMC 显示 虚拟日间 VMC 显示旨在为机组人员提供类似的视觉提示,这些提示在外部能见度不受限制时可用(即在 VMC 下观察到)。飞机状态意识联合安全分析 (JSAT) 和实施小组 (JSIT) 报告 (CAST, 2014a; CAST, 2014b) 建议,为了提供必要的视觉提示,防止机组人员的 SD/LESA 导致 LOC,制造商应开发和实施虚拟日间 VMC 显示系统,例如合成视觉系统。为了支持这一实施,CAST 要求美国国家航空航天局 (NASA) 进行研究,以支持定义虚拟日间 VMC 显示的最低要求,以实现提高机组人员对飞机姿态意识的预期功能;请参阅 CAST 安全增强 200 (SE-200),标题为“飞机状态意识 - 虚拟日间 VMC 显示”。飞机状态感知 – 虚拟日间 VMC 显示器 NASA 开发了一个名为“飞机状态感知技术”(TASA)的项目,该项目部分解决了 CAST 的研究请求,以支持制造商设计和实施虚拟日间 VMC 显示器,这将提供必要的视觉提示以防止 SD/LESA 并有助于检测异常姿态和执行恢复。在大型运输飞机中,异常姿态在操作上定义为机头向上俯仰姿态大于 25 度、机头向下俯仰姿态大于 10 度、倾斜角大于 45 度或在这些参数范围内飞行但空速不适合条件。它们的预期功能是提高连续姿态、高度和地形感知能力,降低不稳定进近、无意中进入