基于碎片的量子化学方法提供了一种避免电子结构计算的非线性缩放的方法,因此可以使用高级方法研究大型分子系统。在这里,我们使用碎片来计算具有数千个原子的系统中的蛋白质-配体相互作用能,使用一种用于管理基于碎片的计算的新软件平台,该平台实现了屏蔽多体展开。使用最小基半经验方法 (HF-3c) 进行的收敛测试表明,使用单残基碎片和简单氢帽的二体计算足以重现使用传统超分子电子结构计算获得的相互作用能,误差在 1 kcal/mol 以内,计算成本约为 1%。我们还表明,HF-3c 结果说明了密度泛函理论在增强四倍 ζ 质量的基组中获得的趋势。碎片化的战略部署有利于融合生物分子模型系统与高质量电子结构方法和基组一起使用,将从头算量子化学引入迄今为止难以想象的规模的系统。这将有助于为机器学习应用生成高质量的训练数据。
摘要:在本文中,我们提出了对三阶矩矩的两能量配置的新的,更稳定的数值实现,并提出了统一的凝结和N依赖性求解器(TOUCAN)湍流方案。toucans中的原始时间稳定方案往往会遭受稳定的地层湍流中的虚假振荡。由于它们的高频,振荡类似于由湍流交换系数与稳定性参数之间的耦合引起的所谓纯正。但是,我们的分析和仿真表明,两能方案中的振荡是由使用特定隐式的使用 - 对放松条款的明确时间离散化引起的。在Toucans中,放松技术用于预后湍流能量方程中的源和耗散项,以确保相对较长的时间步长的数值稳定性。我们既提出了详细的线性稳定性分析和分叉分析,这表明时间步骤超过关键时步长度的时间步骤是振荡的。基于这些发现,我们提出了有关涉及条款的新负担得起的时间离散化,以使计划更具隐式。这可以确保具有足够精度的稳定解决方案,以实现更广泛的时间步长。我们确认了理想化的1D和完整3D模型实验中的分析结果。
摘要 人类大脑通过多种方式接收刺激;其中,音频是大脑在交流、娱乐、警告等方面的重要相关刺激来源。在此背景下,本文的目的是推进对大脑对不同类型的音乐和不同性质的声音(语音和音乐)的反应的分类。为此,设计了两个不同的实验,从听不同音乐类型的歌曲和不同语言的句子的受试者那里获取脑电图信号。据此,提出了一种新的方案来表征脑信号以进行分类;该方案基于构建一个特征矩阵,该特征矩阵建立在不同脑电图通道测量的能量之间的关系和使用双长短期记忆神经网络的基础上。利用获得的数据,对基于脑电图的语音和音乐、不同音乐类型以及受试者是否喜欢所听歌曲进行分类进行评估。实验表明,所提出的方案性能令人满意。二元音频类型分类的结果成功率达到 98.66%。在四种音乐流派的多类分类中,准确率达到61.59%,音乐品味的二分类结果上升至96.96%。
超薄的二维(2D)过渡金属氧化物和氢氧化物(TMO和TMH)纳米片对于由于一组独特的物理和化学性能而产生高性能的储能设备具有吸引力。此类材料的扁平2D结构提供了足够数量的活性吸附中心,并且在几种纳米的订单上,超小的厚度提供了快速电荷传递,从而显着提高了电子电导率。这篇简短的评论总结了基于超薄的2D纳米片的材料合成的最新进展,用于储能应用,包括假能力,锂离子电池和其他可充电设备。该评论还提供了有关各种功率来源基于TMO和TMH的超薄纳米材料合成2D纳米材料的代表性工作的例子。总而言之,本文讨论了可能进一步开发超薄二维过渡金属氧化物和氢氧化物的方法和途径的前景和方向。
经典发动机将热量从热源转移到冷源,方法是使用工作物质 (WS) 将热量依次与每个热源接触。这种热的上游流动在热力学上增加了发动机的熵。在此过程中,自然会限制发动机的最大效率,该效率不能超过由两个热源的温度比决定的理想值。卡诺于 1824 年证明了这一极限,体现了热力学第二定律。量子发动机可以通过重新调整其基本概念来超越这一限制。理论 [1–4] 和实验 [3,5–7] 都表明,可以从量子系统中获取额外的工作能力,称为“能效”。理论上,这些发动机的运行可以分为“冲程”,以模仿自然界的最小作用原理。[3] 冲程的作用以其持续时间和速率为特征
由于发展中国家和全球变暖的生活质量改善,世界对空调的需求正在迅速飙升。政府间气候变化委员会(IPCC)估计,仅对空调的需求将从2000年的每年300瓦特小时(TWH/年)上升到2050年的4000,而10,000乘2100(Henley 2015)。其他估计预测,对冷却的需求将设置为2070年左右的加热,如图1(Isaac和van Vuuren 2009)。空调系统的能源成本可能很高,尤其是在岛屿位置,由于液体化石燃料作为主要一代资源,电力成本通常很高。深海位于热跃层下方,是一个几乎无限的散热器(冷却来源),它创造了一个机会,可以开发出较低成本的海洋附近的地区冷却系统。海水空调(SWAC)是一种地区冷却技术,使用深冷海水进行冷却,即使在热带地区(国家海洋和大气管理,2018年),深度在700至2000 m之间的深度可冷来冷却3-5°C,如图。2。已经对表面和深海之间的温度差异进行了广泛的研究,以发电和淡化目的(Khosravi等人。2019; Jung and Hwang 2014; Semmari等。2012; Odum 2000)。SWAC在1970年代开始被考虑,并在1990年代初获得了动力。是针对海底胸腺胸甲允许相当短的冷海水进气管道的热带和赤道区域提出的(Syed等人1991)。 SWAC取代了常规交流系统中使用的冷却器,大大降低了电力消耗和冷却成本(Makai Ocean Engineering 2015)。 SWAC系统的电力成本通常比传统的交流系统低80%(Van Ryzin和Leraand 1991; Van Ryzin和Leraand 1992),其中约占SWAC总项目成本的20%(拉丁美洲开发银行2015)。 这些冷却需求项目应尽可能大,以降低规模经济的整体成本1991)。SWAC取代了常规交流系统中使用的冷却器,大大降低了电力消耗和冷却成本(Makai Ocean Engineering 2015)。SWAC系统的电力成本通常比传统的交流系统低80%(Van Ryzin和Leraand 1991; Van Ryzin和Leraand 1992),其中约占SWAC总项目成本的20%(拉丁美洲开发银行2015)。这些冷却需求项目应尽可能大,以降低规模经济的整体成本
EMI 能量的产生就好比人类生命的动能来源一样人类从胚胎成形开始,心脏便开始噗通噗通非常规律及周期的跳动,这样规律的跳动像帮浦一样,将血液输送到全身必要的细胞及器官,使生命得以维系.这心脏规律的跳动就成了生命的能量来源。 而电磁粒子规律的跳动,这样的振荡就如同心脏跳动一样产生了电磁场的能量
摘要:本文采用基于量子变分原理的算法计算了氢分子基态能量。由于本研究的系统(即氢分子)相对较小,因此使用模拟器可以有效地经典模拟该分子的基态能量,因此通过模拟器计算得到了氢分子基态能量。本文阐述了该算法的完整细节。为此,本文给出了费米子 - 量子比特和分子哈密顿量 - 量子比特哈密顿量变换的完整描述。作者寻找产生系统最小能量的量子比特系统参数(θ 0 和 θ 1 ),并研究了基态能量与分子键长的关系。与 Kandala 等人的电路相比,本文提出的电路很简单,不包含很多参数,作者只控制两个参数(θ 0 和 θ 1 )。
分散生产传统网络是集中的,并且许多能量循环实际上从未使用过。 div>5GDHC是“基于需求的”,也就是说,它们仅在需求时才开始产生和循环能量。 div>能量不会浪费:它仅发生在何时何地发生。 div>
本文旨在让读者熟悉心理能量 (PE) 的概念,以及它在深化我们对心理社会适应创伤性生活事件以及更确切地说是慢性疾病和残疾 (CID) 发病的理解方面所起的作用。为了实现这一目标,采取了以下步骤:首先,简要回顾了物理学领域传统上所设想的能量、力和作用的性质。其次,概述了 PE,重点强调了其历史基础以及其在社会、健康和康复心理学领域的当前概念。特别强调了 PE 在适应压力、创伤和 CID 发病领域的应用。第三,回顾了传统上用于评估 PE 及其动态的性质、内容和规模的测量工具。最后,提出了关于 PE 的维度结构、过程和动态的新观点,它与身体能量在概念上的相似性,以及它与经历创伤和 CID 后社会心理适应过程的潜在和更深层次的联系。