引言NEX CG II是多元元素分散X射线荧光(EDXRF)光谱仪,可在许多行业中执行快速定性和定量的痕量元素分析和地址需求。这种下一代高端光谱仪是痕量重金属和卤素分析的理想选择,这是对多个部门的需求增加。这些功能使NEX CG II特别适合于环境监测,工业废物应用,再生材料,电子组件,药物材料,化妆品等。此外,NEX CG II通过几乎所有基质中的铀(U)提供了非破坏性分析,从油和液体到固体,金属,聚合物,粉末,粉末,糊状,涂料和薄项。与常规EDXRF光谱仪不同,nex
扫描电子显微镜与能量色散 X 射线光谱法 (SEM-EDS) 相结合是一种应用广泛的元素微分析方法。硅漂移探测器 (SDD) 的集成显著增强了 EDS 性能,由于其灵敏面积大、输出电容低,因此能够精确识别元素。对 SDD 的精确模拟可以提供洞察力,使未来模型的设计和优化成为可能,而无需昂贵且耗时的实验迭代。此外,当前基于模型的 EDS 应用量化方法已达到其最大预测精度。因此,创建更精确的模拟模型可以帮助在这些量化模型中实现更高的精度,这对所有 EDS 应用都具有极大的价值。考虑到这一目标,基于 Geant4、Allpix Squared 和 COMSOL Multiphysics 开发了一个用于在 EDS 中建模 SDD 的模拟框架。模拟涵盖整个物理流程,包括目标样品的特征 X 射线发射及其在探测器中的吸收。探测器内产生的电荷载体通过 SDD 的内部电场传播,并测量它们各自的电荷贡献以模拟 EDS 光谱。模拟模型与现有文献和内部实验测量结果进行了比较,在 SDD 调整良好的情况下显示出很强的一致性。讨论了模拟框架的局限性,并探索了进一步的研究以提高准确性和速度。关键词:X 射线光谱、硅漂移探测器、扫描电子显微镜、探测器模拟
1。简介石墨及其工业用途的发现可以追溯到16世纪,即在第1届工业革命之前的200多年,该革命是从18世纪中期到19世纪中期。石墨的第一次工业用途是用作铅笔铅和降压材料。现在用于包括核能在内的各种高科技领域。每年生产超过120万吨石墨,未来需求的上升趋势。石墨廉价且分布在世界范围内。根据可验证的资料来源,存在数百年来满足需求的储备。现有的石墨供应几乎是有限的。一旦将石墨的碎屑剥落,它就会成为一种令人着迷的材料,称为“石墨烯”,这是一个令人惊叹的发现,直到2004年才发生。石墨烯比铁钢强1000倍,其电导率和导热性的10倍以上是金属,并且是当今已知的最薄,最轻巧的功能。2010年,诺贝尔物理学奖因其发现而获得。创新的材料和产品可以使用石墨烯在各种领域创建。因此,世界各地的研究机构和公司几乎将石墨烯的实际应用中的研究和开发进行。在发现以来的几年中,已经开发了电子产品,声学产品,声学产品,每日商品,轮胎,高尔夫球,运动服和鞋子,从而利用石墨烯来提高冲击强度,电导率特征等。
Thermo Scientific Phenom Desktop SEM 重新定义了速度、易用性和性能。直观的用户界面使所有级别的用户都可以轻松获得 SEM 图像。所有 Phenom Desktop SEM 都支持能量色散 X 射线光谱 (EDS),通过全面的元素分析补充 SEM 成像。强大的峰值识别、可靠的量化、量身定制的应用程序包和紧密的硬件集成支持只需单击几下即可实现的完整分析工作流程。
使用这些先进的显微镜工具研究材料,为在原子层面探索其结构和化学性质提供了机会。电子光学和超灵敏探测器的最佳组合使得即使是最轻、最灵敏的材料也能在亚埃级进行表征。电子束中的像差校正使得能够通过同步 X 射线能量色散光谱和电子能量损失光谱 (EELS) 等技术精确获取原子级化学特性和键合状态信息。因此,最先进的电子显微镜技术对于材料研究至关重要。
材料与技术介绍,结构分析工具:X射线衍射:相位识别、索引和晶格参数确定、使用各种模型进行分析线轮廓拟合、中子衍射、反射高能电子衍射和低能电子衍射;显微镜技术:光学显微镜、透射电子显微镜(TEM)、能量色散X射线微分析(EDS)、扫描电子显微镜(SEM)、卢瑟福背散射光谱(RBS)、原子力显微镜(AFM)和扫描探针显微镜(SPM);热分析技术:差热分析(DTA)、差示扫描量热法(DSC)、热重分析(TGA);电气表征技术:电阻率、霍尔效应、磁阻;
我们首次使用微型降低方法来证明高渗透稀土(RE)铝钙晶(Realo 3)的晶体生长,以告知未来对功能晶体的探索。为了确定组成如何影响相形成,我们从下面的列表中制定了包含五个RES的等值组成分:LU,YB,TM,ER,Y,HO,HO,HO,DY,TB,TB,GD,GD,GD,EU,SM,SM,ND,ND,PR,PR,CE,LA。要测试RES与相似的离子半径的组合是否可能有利于单相的组合物,含有连续或非连续离子半径值的RES的组成。粉末和单晶X射线衍射表明,仅包含具有相似离子半径的晶体,形成正骨单次真实3是单相。含有不同离子半径的RES或RES的混合物的晶体,即形成正骨,菱形和四方单人REARO 3的晶体是相的混合物。 通过电子探针微分析分析的单相晶体中的元素分布证实没有优先掺入任何组成部分的证据。 通过扫描电子显微镜和能量色散光谱法分析了次级相的分布和组成;次级相被视为晶体中心的一个小区域,其分支特征更靠近外表面。晶体,即形成正骨,菱形和四方单人REARO 3的晶体是相的混合物。通过电子探针微分析分析的单相晶体中的元素分布证实没有优先掺入任何组成部分的证据。通过扫描电子显微镜和能量色散光谱法分析了次级相的分布和组成;次级相被视为晶体中心的一个小区域,其分支特征更靠近外表面。
摘要:采用固相合成、研磨、压制和烧结工艺制备了含有堇青石、莫来石、SiO 2 玻璃和 SiO 2 -B 2 O 3 -Al 2 O 3 - BaO-ZrO 2 玻璃的玻璃陶瓷复合材料。使用加热显微镜、差示热分析、热重法、扫描电子显微镜、能量色散光谱、X 射线衍射分析、阻抗谱、透射法和时域光谱 (TDS) 检查了 Hz-MHz、GHz 和 THz 范围内的热行为、微观结构、成分和介电性能。获得的基板表现出 4.0-4.8 的低介电常数。自发形成的封闭孔隙取决于烧结条件,被认为是降低有效介电常数的一个因素。