摘要 :由于相关优势,合成氧化钴纳米粒子 (Co3O4-NPs) 的绿色技术如今比其他方法更受青睐。本研究中的 Co3O4-NPs 是利用菠萝废皮和氯化钴 (Ⅱ) 作为钴源生成的。使用傅里叶变换光谱 (FTIR)、X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、能量色散 X 射线光谱 (EDX)、紫外分光光度计等几种方法对生成的 NPs 进行分析。已确定生成的 Co3O4-NPs 对抗革兰氏阳性菌具有抗菌性能,并通过琼脂孔扩散法发现其对枯草芽孢杆菌 (B.subtilis) 具有活性。这种新创建的绿色合成技术对环境无害,可以取代 Co NPs 的物理和化学过程。
Weyl和Dirac半学,其特征在于其独特的带状结构在费米水平(E F)附近具有线性能量色散(E VS K),已成为基于热电材料的下一代技术的有前途的候选者。它们的出色电子特性,尤其是较高的载流子迁移率和实质性的浆果曲率,它提供了潜在的潜力,可以超越常规热电材料固有的局限性。对这些材料基础的基本物理学的全面理解至关重要。本章主要集中在Weyl和Dirac半法的拓扑特性和独特的电子带结构中,提供了一个理论框架,用于理解其热电传输特性,例如Seebeck系数,电导率和导热性。浆果曲率在增强旁观系数的同时降低导热率的同时是关键重点。
图3。(a)从左到右的顶行:边缘SEM,能量色散光谱(EDS)分析,显示了TIO 2纳米分布的分布以及高指数平面化a 〜4.25 µm和H〜1.8 µm的高指数平面底物S的红色激光衍射模式。 (b)中排:平面底物u的边缘SEM和红色激光衍射模式(A〜16 µm,H〜4.1 µm)。请注意大型无特征中央和六角形散射模式。(c)A 〜15 µm和H〜7 µm的近距离商业MLA的光学图像,以及(d)平面化弥漫性随机结构(基板M)的光学图像; OLED均在所有这些PE上用TiO 2纳米颗粒的高指数像素层制造。
图1:(a)具有SB 2 SE 3层的硅波导的横截面SEM图像,厚度为100 nm和20 nm SiO 2覆层。(b)在单独的面板和SEM覆盖(大面板)中显示氧(OKα),硅(SiKα)和硒(SELα)特征的MMI设备的能量色散光谱(EDS)分析。(a,b)中的所有比例尺均为200 nm。(c,d)测量的插入插入损耗的直形波导,其长度不同的SB 2 SE 3嵌入了五个不同的沉积厚度,用于晶状状态(C)和无定形状态(d),并归一化为无PCM的笔直波形。(e)db/ µm中的传播损失α针对SB 2 SE 3层厚度,用于无定形状态(钻石,蓝色)和晶状状态(圆,红色)。
在 SEM 过程中,样品会发射出特征 X 射线。我们可以使用能量色散 X 射线光谱仪 (EDS 或 EDX) 来检测特征 X 射线,以进一步表征元素成分。当主束电子撞击内壳电子时,会产生一个空隙,来自原子较高壳层的电子会落下以填补空隙。这种电子落下会释放原子以 X 射线形式发射的能量。特征 X 射线的能量模式取决于原子中电子壳层之间的能级差异,而每种原子的能级差异都是独一无二的。该信号可以从材料深处逸出,从而可以对 100 纳米到微米深度之间的成分进行调查。
对于社会性黄蜂来说,胎粪是化蛹前最后一个幼虫阶段的粪便。在马蜂属的五龄(末龄)幼虫最后一次进食后,会以粪便的形式排出胎粪。胎粪的排出对于完成变态至关重要。本研究的目的是确定 Polistes dominulus (Christ)(膜翅目:蚤科)胎粪的元素组成。使用能量色散 X 射线扫描电子显微镜分析胎粪,确定 C、N、O、P、K、Si、Fe、Mg、S、Al、Ca、Na 和 Cl 的平均原子百分比。我们还发现,研究中胎粪中元素的百分比是可变的,可能与幼虫饮食有关。
为了研究 PTFE 膜上合金膜化学组成的形貌和空间分布,进行了电子显微镜检查。SEM 图像表明 AuAg、AuPd 和 AgPd 二元合金膜共形沉积在 PTFE 膜上,保持了 GDE 的纤维性质(图 1c 左图和补充图 1)。此外,所有合金膜在不同成分中都表现出相似的形貌。对由 Au、Ag 和 Pd 组成的每种二元合金的 SEM-EDS 分析表明,所有金属均匀分布在 PTFE 膜上,没有明显的二次相沉淀。横截面透射电子显微镜-能量色散谱 (TEM-EDS) 图像也证实了 Au 3 Ag 1 Pd 3 催化剂的形成,整个膜厚度具有均匀的化学组成(图 1d)。
摘要 Mandelstam-Tamm 量子速度极限 (QSL) 对纯态封闭系统的演化速度设定了一个上限。在本文中,我们推导出该 QSL 的几种扩展,以用于混合态封闭系统。我们还比较了这些扩展的强度并检查了它们的紧密性。Mandelstam-Tamm QSL 最广泛使用的扩展源自 Uhlmann 的能量色散估计。我们仔细分析了该估计的底层几何,该分析表明 Bures 度量或等效的量子 Fisher 信息很少会产生紧密扩展。这一观察结果引导我们解决是否存在 Mandelstam-Tamm QSL 的最紧密通用扩展。使用与 Uhlmann 开发的几何构造类似的几何构造,我们证明了情况确实如此。此外,我们表明混合态的紧密演化通常由时变哈密顿量产生,这与纯态系统的情况形成对比。
摘要:本研究采用压缩成型仪制备了聚酰胺 6 (PA6)-AZ61 镁合金复合材料和纯 PA6。基体和增强体均以粉末形式制备。使用行星球磨机混合 PA6 和 AZ61 微粉。研究了不同百分比的 AZ61 含量对复合材料最终性能的影响。采用 X 射线衍射 (XRD) 分析和带能量色散 X 射线光谱的扫描电子显微镜 (SEM-EDS) 来验证混合过程的均匀性并确认原材料和复合材料的成分。结果,相对于原始 PA6,极限拉伸强度 (UTS) 大幅提高了 48.3%,达到 58 MPa。而屈服强度 (YS) 则显著上升至 49.38 MPa,提高了 52.9%。此外,PA6-5AZ61 组合物的显微硬度值最高,为 21.162 HV,与非合金 PA6 材料相比,提高了 66.3%。这一结果表明 AZ61 具有改善基质材料性能的潜力。
本研究包括 47 个断裂的 Ni-Ti 锉,这些锉位于根尖附近(根尖三分之一处)的弯曲部分,弯曲角度大于 15 度。Nd:YAP 激光的功率设置为 3 瓦,每脉冲 300 毫焦耳。采用 200 微米光纤,以 10 赫兹的脉冲模式运行,脉冲持续时间为 150 微米,能量密度为每秒 955.41 焦耳/厘米²。这些参数之前已验证过安全性。在整个过程中,激光光纤都放置在断裂锉附近。成功的定义为完全移除或绕过器械,而失败包括部分绕过、未绕过或侧向穿孔。使用扫描电子显微镜 (SEM) 来评估激光照射导致的牙本质壁的任何物理变化。采用能量色散X射线(EDX)光谱分析激光照射后牙本质管壁的化学成分,并计算可进行旁路手术时平均旁路时间。