脂肪组织曾经被称为储能的储层,但现在被认为是激素和能量通量的关键器官,对健康和疾病有重要影响。依赖性葡萄糖胰岛素多肽(GIP)是一种从小肠K细胞中分泌的泌尿素激素,负责增强胰岛素的释放,并因其独立且友善的作用而引起了与胰葡萄糖类似肽1(GLP-1)的独立和友好作用,另一种从小肠肠内分泌的细胞。在整个脂肪组织中发现GIP受体(GIPR),而GLP-1受体(GLP-1R)却没有发现,并且一些研究表明,GIPR动作降低了体重并在脂肪解析中起作用,葡萄糖/脂质/脂质的摄取/分配,脂肪组织血液流量,可能会含量为FFA(FFA),FFA(FFA)可能是FFA,FFA的氧气含量(FFA)。通过其他激素,例如胰岛素。本评论总结了使用细胞,啮齿动物和人类模型对GIP在脂肪组织(白色和棕色的不同库)中的影响的研究。这样做,我们探讨了基于GIPR的药物治疗代谢疾病的机制,例如2型糖尿病和肥胖症,以及GIPR激动剂和拮抗作用如何促进代谢健康成果的改善,并有可能通过脂肪组织中的作用来改善代谢健康。
微生物稳态的失衡,称为营养不良,与肥胖引起的代谢性疾病的进展至关重要,包括2型糖尿病(T2D)。由于肠道泄漏或多种微生物代谢物的释放,肠道微生物多样性的改变和致病细菌的丰度破坏了代谢稳态和增强慢性炎症。肠道微生物多样性中与肥胖相关的转移会使甘油三酸酯和胆固醇水平恶化,从而调节脂肪生成,脂解和脂肪酸氧化。此外,肠道轴的复杂相互作用与改变的微生物组探针和微生物组衍生的代谢产物破坏了双向通信,以启动胰岛素抵抗。此外,内脏脂肪组织中的一个独特的微生物群落与肥胖T2D个体的功能障碍有关。在T2D患者的肠系膜脂肪组织中发现了特定的细菌特征。最近,已经表明,在克罗恩病中,衍生的肠道细菌Innocuum转移到肠系膜脂肪组织并通过诱导M2巨噬细胞极化,增加脂肪生成并促进微生物监测来调节其功能。考虑到这些事实,肠道和脂肪组织中微生物群的调节可以用作当代通过使用益生元,益生菌或粪便微生物移植来管理T2D的当代方法。总的来说,这篇评论巩固了有关肠道和脂肪组织营养不良的当前知识及其在肥胖引起的T2D的发育和发展中的作用。它强调了肠道菌群及其代谢产物的重要性,以及脂肪组织微生物组的改变,用于促进脂肪组织功能障碍,并确定新型的治疗策略,并为未来的研究和潜在的研究和潜在的临床干预提供了宝贵的见解和方向。
提出了一种定量方法,允许在肌肉中确定体内葡萄糖代谢,并提出了麻醉大鼠的白脂肪组织。将2-脱氧的示踪剂剂量[3 h]葡萄糖静脉注射到麻醉大鼠中,并在动脉血液中监测2-脱氧的浓度[3 h]葡萄糖。在30-80分钟后,对三个肌肉,比目鱼,伸肌长肌和表体chlearis,围角膜白色脂肪组织和大脑进行采样,并分析其2-脱氧[3H]葡萄糖6-磷酸盐的含量。该含量可能与同一时期内的葡萄糖利用有关,因为(1)已知2-脱氧[3H]葡萄糖的积分是已知的,并且(2)(2)(2)与经过实验剂中的运输和磷酸步骤相比,与葡萄糖在运输和磷酸步骤中相比,(2)校正因子对2-脱氧葡萄糖的类似效应。葡萄糖利用率(0.1胰岛素/毫升等离子体)或在Euglycapoomenty-Hyperinsulineminememic葡萄糖夹具期间(88个血浆胰岛素/ML)和48个H-Starved rats rats。的结果在定性和定量上与所研究组织的已知生理特征相对应。
所有的努力都是为了最大程度地减少苦难,同时还最大程度地减少了使用的动物数量。60只动物接受了缺血/再灌注手术程序(如下所述)。大鼠分为六组。对照组(C组,n = 15)接受了手术程序,但没有接受任何治疗干预措施,因为它们被DMEM-F12(Dulbecco修饰的Eagle Medium/ Mudientrient Mediument/ Dutrient Medient Cimbure FIF-12)接种了无菌输注(Gibco™Invitrogen Corporation,USA,USA,USA)。此外,一组被用作对照,旨在研究NGAL作为IRI生物标志物的准确性的潜在使用。健康组(H组,n = 15)保持在相同的条件下,但未提交手术程序或接受任何治疗。在其余三组中,进行缺血/再灌注手术程序,以及辛伐他汀(操纵,Viaflora,butitiba,curitiba)和/或ADSC输注,口服Simvastatin(S,n = 15),ADSC Infusion(SC,n = 15),ADSC Infusion + 1 SCC + SC + SC + SC + SC + SSC + SC + SC + SCSSSC + SCSSSC + SCSSSC + SCSSSC + SCSSSC + SCSSSC + SCSSSC + SCSSSC + SCSSSC + SCSSSC + SCSSSC + SCSSSC,
线粒体棕色脂肪组织维持因子NIPSNAP1接口1直接与β-氧化蛋白机械。2 3 pei-yin tsai 1,Yue Qu 1,Claire Walter 1,Yang Liu 1,Chloe Cheng 2,Joeva J Barrow 1 * 4 5 1营养科学司,康奈尔大学,康奈尔大学,纽约州,14850年
在过去十年中,人们对肿瘤微环境 (TME) 对癌症进展和化疗耐药性的影响产生了浓厚兴趣。恶性表型并非仅由特定的癌细胞亚群驱动,而是由癌症干细胞 (CSC) 和 TME 元素之间复杂的相互作用调控 [ 1 ]。这种双向串扰包括促进肿瘤生长、促进转移播散以及限制药物渗透和吸收的信号。在此背景下,科学界对脂肪组织 (AT) 在致癌作用中的作用的兴趣日益增加。事实上,已知 AT 参与炎症和免疫反应的失调,导致代谢异常,并促进癌症的发展和进展 [ 2 ]。 AT 在癌症进展中的作用由其解剖分布支持,例如在乳腺癌中,TME 主要由脂肪组织组成,癌细胞与脂肪细胞接触生长 [ 3 ]。癌细胞和脂肪细胞之间紧密而长时间的接触会导致脂肪细胞重编程,产生所谓的“癌症相关脂肪细胞”(CAA),它们可以通过释放脂肪因子、生长因子和代谢物直接或间接促进肿瘤的生长和进展。了解 CAA 和 CSC 之间的串扰,以及 TME 中释放的脂肪因子和代谢物如何调节不同的分子通路,可能对预防肿瘤进展至关重要。在这里,我们报告了 AT 在
背景:表达脂肪组织失调(EAT)可能有助于2型糖尿病(T2D)的心力衰竭发展。这项研究旨在评估T2D患者且没有普遍的心血管疾病的患者的饮食体积与成分与亚临床心脏功能障碍的成像标记之间的关联。方法:前瞻性病例对照研究,招募有或没有T2D的参与者并且没有已知的Cardiovas cular病。包括215人T2D(中位年龄为63岁,男性60%)和39名非糖尿病患者(59岁的中位年龄为62%)。使用计算机断层扫描(CT),总饮食体积和平均CT衰减,以及低衰减(Hounsfield单位范围-190至-90)的饮食量通过深度学习方法和量索引到身体表面积进行量化。使用线性回归评估了与心脏磁共振衍生的左心室(LV)体积和应变指数的关联。结果:T2D参与者的LV质量/体积比(中位0.89 g/ml [0.82 - 0.99] vs 0.79 g/ml [0.75 - 0.89])和较低的全球纵向应变(GLS; 16.1±2.3%vs 17.2 vs 17.2±2.2%)。总索引食品量与平均CT衰减相关。低衰减索引的饮食量高2倍(18.8 cm 3 /m 2 vs. 9.4 cm 3 /m 2,p <0.001,p <0.001),与LV质量 /体积比(ß= 0.002,p = 0.01)和GLS(ß= - 0.03,p = 0.03,p = 0.03)独立相关。结论:T2D中看到的较高饮食量与平均CT衰减较低有关。低衰减索引的饮食体积是独立的,但仅与T2D中亚临床心脏功能障碍的标记相关。
CRISPR/Cas9 已实现多种组织中的可诱导基因敲除;然而,尚未有其在棕色脂肪组织 (BAT) 中的应用报道。在此,我们开发了棕色脂肪细胞 CRISPR (BAd-CRISPR) 方法来快速检测一个或多个基因的功能。使用 BAd-CRISPR,将表达单向导 RNA (sgRNA) 的腺相关病毒 (AAV8) 直接施用于在棕色脂肪细胞中表达 Cas9 的小鼠的 BAT。我们表明,将 AAV8-sgRNA 局部施用于成年小鼠的肩胛间 BAT 可强有力地转导棕色脂肪细胞,并使脂联素、脂肪甘油三酯脂肪酶、脂肪酸合酶、周脂素 1 或硬脂酰辅酶 A 去饱和酶 1 的表达降低 90% 以上。施用多个 AAV8 sgRNA 可同时敲除多达三个基因。 BAd-CRISPR 诱导移码突变并抑制靶基因 mRNA 表达,但不会导致 BAT 中脱靶突变的大量积累。我们利用 BAd-CRISPR 创建了可诱导的解偶联蛋白 1 (Ucp1) 敲除小鼠,以评估 UCP1 缺失对成年小鼠适应性产热的影响。可诱导的 Ucp1 敲除不会改变核心体温;然而,BAd-CRISPR Ucp1 小鼠的成纤维细胞生长因子 21 循环浓度升高,并且 BAT 基因表达发生变化,与通过增加过氧化物酶体脂质氧化而产生的热量一致。其他分子适应性预示着额外的细胞效率低下,蛋白质合成和周转增加,线粒体对线粒体编码基因表达的依赖降低,核编码线粒体基因表达增加。这些数据表明 BAd-CRISPR 是一种加速脂肪组织生物学发现的有效工具。
了解脂肪组织的生理影响以及可靠的量化和表征非侵入性方法。与具有相同体重指数 (BMI) 的男性相比,女性的平均体脂百分比更高,但她们往往在臀股区域积累更大比例的脂肪组织。相比之下,男性则倾向于在腹部积累脂肪组织。4 已充分证实,体脂分布对心脏代谢风险的影响大于全身脂肪含量,而腹部脂肪的风险更大。因此,腹部脂肪组织已在身体成分研究中得到广泛研究。脂肪组织传统上分为两个主要部分:皮下脂肪组织 (SAT) 和内脏脂肪组织 (VAT)。VAT 是包围内脏器官的腹部脂肪组织,与多种不良健康结果有关。研究显示,VAT 升高与代谢紊乱有关,包括葡萄糖和脂质代谢受损,2,3,5 导致心脏代谢风险和全因