限制脉冲潜在产量的主要限制因素包括除了社会经济因素以外的脉冲生长区域中普遍存在的生物和非生物应力。在生物胁迫中,与根腐病配合物相结合的镰刀菌可能是最广泛的疾病,除了干根腐烂和锁骨腐烂外,还会造成鹰嘴豆的巨大损失。虽然镰刀菌,无菌性摩西和植物疫病会导致鸽子,黄色马赛克,尾虫叶斑,粉状霉菌和叶片皱纹和叶片造成大量损失,并在Vigna作物(Mungbean和Urdbean)中造成了相当大的损害。在鹰嘴豆和鸽子中的革兰氏荚虫(Helicoverpa Armigera)中,岩豆和鸽子中的革兰氏pod虫,木豆中的豆荚在乌尔德比恩和蒙比e造成严重损害各自的作物的豆荚,粉丝,粉丝,jassids和thrips。bruchids是储存的脉冲晶粒中最严重的害虫,在管理中需要最高优先级。杂草也会大大损失脉冲。最近,线虫已成为许多地区成功种植脉冲的潜在威胁。
近年来,多层感知器 (MLP) 成为计算机视觉任务领域的研究热点。由于没有归纳偏差,MLP 在特征提取方面表现良好并取得了惊人的效果。然而,由于其结构简单,其性能高度依赖于局部特征通信机制。为了进一步提高 MLP 的性能,我们引入了脑启发神经网络的信息通信机制。脉冲神经网络 (SNN) 是最著名的脑启发神经网络,在处理稀疏数据方面取得了巨大成功。SNN 中的泄漏积分和触发 (LIF) 神经元用于在不同时间步骤之间进行通信。在本文中,我们将 LIF 神经元的机制合并到 MLP 模型中,以在不增加 FLOP 的情况下实现更好的准确率。我们提出了一种全精度 LIF 操作来在块之间进行通信,包括不同方向的水平 LIF 和垂直 LIF。我们还建议使用组 LIF 来提取更好的局部特征。借助 LIF 模块,我们的 SNN-MLP 模型在 ImageNet 数据集上分别仅使用 4.4G、8.5G 和 15.2G FLOP 就实现了 81.9%、83.3% 和 83.5% 的 top-1 准确率,据我们所知,这是最先进的结果。源代码将在 https://gitee.com/mindspore/models/tree/master/research/cv/snn mlp 上提供。
将激光二极管连接到驱动器时,将串联电感降至最低将使脉冲的上升时间保持在最低水平,从而实现最短的脉冲。这意味着引线应尽可能短,激光二极管应尽可能靠近驱动器安装。如果无法将激光二极管直接连接到驱动器,则需要使用低电感传输线。传输线电感的典型值约为每英寸 20 nH。这意味着在 10 ns 内切换 40 A 的电流(di/dt 为 40 A/10 ns)将导致 80 V 的瞬态电压。较长的传输线会导致更高的感应瞬态电压,从而导致脉冲上升时间显著增加并限制性能。[2] 很好地概述了电气连接如何影响脉冲性能。
1 机器人、人工智能与实时系统,慕尼黑工业大学信息学院,德国慕尼黑,2 于利希超级计算中心 (JSC) 神经科学模拟与数据实验室,高级模拟研究所,JARA,于利希研究中心有限公司,德国于利希,3 瑞士国家超级计算中心 (CSCS),苏黎世联邦理工学院,瑞士卢加诺,4 神经计算单元,冲绳科学技术研究生院,日本冲绳,5 机器人与人工智能卓越系,生物机器人研究所,Scuola Superiore Sant'Anna,意大利蓬泰代拉,6 计算机架构与技术系,格拉纳达大学信息与通信技术研究中心,西班牙格拉纳达,7 图像处理研究团队,日本理化学研究所先进光子学中心,和光,8 计算工程应用单元,信息系统与网络安全总部,理化学研究所,日本和光市、9 日本东京电气通信大学信息与工程研究生院、10 德国于利希研究中心、神经科学与医学研究所 (INM-6)、高级模拟研究所 (IAS-6)、JARA BRAIN 研究所 I、11 德国亚琛工业大学计算机科学 3-软件工程、12 日本神户理化学研究所计算科学中心
胰腺癌是一种高度侵略性的恶性肿瘤,近年来变得越来越普遍。尽管在包括手术,放射疗法,生物疗法和靶向治疗在内的强化治疗方式方面取得了进步,但胰腺癌患者的总生存率并没有明显改善。这可能归因于阴险的发作,未知的病理生理学和疾病预后不良。因此,必须识别和开发对胰腺癌的更有效和更安全的治疗方法。肿瘤免疫疗法是手术,放疗和化学疗法后的新的和第四个抗肿瘤疗法的支柱。近年来对各种恶性肿瘤的免疫疗法的使用取得了显着进步。在治疗胰腺癌方面,也取得了突破。本综述描述了免疫检查点抑制剂,癌症疫苗,收养细胞疗法,溶瘤病毒和基质止血疗法的进展,用于治疗胰腺癌。同时讨论了一些新的潜在生物标志物和胰腺癌的潜在免疫疗法组合。也已经阐明了各种免疫疗法的分子机制,并突出了它们的临床应用。还讨论了与免疫疗法和提议克服这些局限性有望的拟议策略相关的挑战,目的是为胰腺癌的免疫疗法提供新的见解。
精确的脉冲定时和时间编码在昆虫的神经系统和高阶动物的感觉外围中得到广泛应用。然而,传统的人工神经网络 (ANN) 和机器学习算法无法利用这种编码策略,因为它们的信号表示是基于速率的。即使在人工脉冲神经网络 (SNN) 的情况下,确定时间编码优于 ANN 的速率编码策略的应用仍然是一个悬而未决的挑战。神经形态传感处理系统为探索时间编码的潜在优势提供了理想的环境,因为它们能够从相对脉冲定时中有效地提取聚类或分类时空活动模式所需的信息。在这里,我们提出了一个受沙蝎启发的神经形态模型来探索时间编码的好处,并在基于事件的传感处理任务中对其进行验证。该任务包括仅使用八个空间分离的振动传感器的相对脉冲定时来定位目标。我们提出了两种不同的方法,其中 SNN 以无监督的方式学习聚类时空模式,并展示了如何通过分析和多个 SNN 模型的数值模拟来解决该任务。我们认为,所提出的模型对于使用精确脉冲时间进行时空模式分类是最佳的,可以用作评估基于时间编码的事件感知处理模型的标准基准。
根据机构或联合石板政府赞助的工作,该报告为此准备。美国政府,其任何机构,或其任何雇员均未对任何信息,设备,产品或流程的准确性,完整性或有效性,都没有任何法律责任或责任,也没有任何法律责任或责任,或者承担任何法律责任或责任。在本文中,请参阅任何特定的商业产品,流程或服务,商标,商标,制造商或其他文档不一定构成或暗示其认可,推荐改造或受到美国政府或其任何机构的支持。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
将激光二极管连接到驱动器时,将串联电感降至最低将使脉冲的上升时间保持在最低水平,从而实现最短的脉冲。这意味着引线应尽可能短,激光二极管应尽可能靠近驱动器安装。如果无法将激光二极管直接连接到驱动器,则需要使用低电感传输线。传输线电感的典型值约为每英寸 20 nH。这意味着在 10 ns 内切换 40 A 的电流(di/dt 为 40 A/10 ns)将导致 80 V 的瞬态电压。较长的传输线会导致更高的感应瞬态电压,从而导致脉冲上升时间显著增加并限制性能。[2] 很好地概述了电气连接如何影响脉冲性能。
在这项工作中,我们提出了一种用于人形 iCub 机器人头部姿势估计和场景表示的神经形态架构。脉冲神经网络在英特尔的神经形态研究芯片 Loihi 中完全实现,并精确整合发出的运动命令,以在神经路径整合过程中估计 iCub 的头部姿势。iCub 的神经形态视觉系统用于校正姿势估计中的漂移。机器人前方物体的位置使用片上突触可塑性来记忆。我们使用机器人头部的 2 个自由度 (DoF) 进行实时机器人实验,并展示精确的路径整合、视觉重置和片上物体位置学习。我们讨论了将机器人系统和神经形态硬件与当前技术集成的要求。
