4。在t L 5处的铅温度。峰值脉冲功率。波形为tp = 10/1000us 6。根据工作峰值反向电压(V)选择瞬态抑制器,该电压应等于或大于或大于DC或连续峰值工作电压
发生器规格:•制造商:NCBJ(波兰)•发射器类型:基于磁控管的微波脉冲发生器•生成的频率:2.98 GHz•脉冲功率:3 MW•脉冲持续时间:0.5 – 3 μs•脉冲重复周期:从单个脉冲到 4 ms•上升前斜率时间:0.1-0.2 μs•下降后斜率时间:0.2-0.5 μs•集成:直接波导与定向天线的结合
Z 机是世界上最大的脉冲功率机,它使用数百个大电容器和数十条传输线将强大的电能脉冲引导和聚焦到目标上。国家点火装置是世界上最大的激光器,它使用数千个光学元件(如透镜、镜子和晶体)将强大的光脉冲引导和聚焦到目标上。这两个设施确保了核威慑的可靠性,同时开辟了惯性聚变能等众多科学领域的新领域,这就是为什么国家点火装置和 Z 机被 NNSA 实验室指导研究和开发实验室的研究人员使用的原因。例如,桑迪亚辐射与电气科学中心和脉冲功率科学中心的研究人员目前正在国家点火装置进行实验,同样,劳伦斯利弗莫尔和洛斯阿拉莫斯国家实验室的科学家也在利用 Z 机进行非常适合桑迪亚设施的研究。
我们报告了基于2-氰基甲基三甲氧基硅烷(CNETM)对介电和储能储存性能对脉冲功率应用的介电性和能量储存性能的残留离子在介电溶胶胶片中的影响。使用了从1.5到6.5的广泛pH催化cnetms sol-gel膜。在近中性pH下处理的溶胶 - 凝胶膜具有改进的介电和能量储能特性,包括11个微型模量,泄漏电流的降低阶,可提取的能量密度为32 j/cm 3,能量提取效率为80%,在685 v/µm时,与在ph/µm相比,ph/µm的能量提取效率为80%。这些改进归因于Sol-Gel膜中离子量减少,这被认为可以抑制可能触发现场驱动的散射和影响电离的移动电荷载体的有害影响,以及随后在高电压下造成灾难性电气故障。目前的工作表明,基于三功能的烷氧基硅烷对脉冲功率应用,工程剩余的荷兰膜中工程剩余载体的重要性。
传记摘要John R. Harris博士是新墨西哥州阿尔伯克基空军研究实验室的高级研究工程师。他获得了学士学位2000年杜克大学物理学学位和硕士学位 和Ph.D. 2002年和2005年,马里兰大学电气工程学位。 在2005年至2009年之间,他在劳伦斯·利弗莫尔国家实验室(Lawrence Livermore National Laboratory)的加速器设计和代码小组中,从2009年到2012年,他担任海军研究生院的研究助理教授,从2012年到2016年,他是科罗拉多州立大学的研究科学家。 哈里斯博士的专业利益涵盖了带电颗粒梁的生产,运输,加速和使用,以及高压,脉冲功率和定向能源系统。 他是在裁判期刊和会议记录中的85篇文章的作者或合着者,拥有三项美国专利,并且是IEEE的高级成员。2000年杜克大学物理学学位和硕士学位和Ph.D. 2002年和2005年,马里兰大学电气工程学位。在2005年至2009年之间,他在劳伦斯·利弗莫尔国家实验室(Lawrence Livermore National Laboratory)的加速器设计和代码小组中,从2009年到2012年,他担任海军研究生院的研究助理教授,从2012年到2016年,他是科罗拉多州立大学的研究科学家。哈里斯博士的专业利益涵盖了带电颗粒梁的生产,运输,加速和使用,以及高压,脉冲功率和定向能源系统。他是在裁判期刊和会议记录中的85篇文章的作者或合着者,拥有三项美国专利,并且是IEEE的高级成员。
效益/回报:可靠且价格合理的 MVDC 故障保护系统,兼容断路器和无断路器故障保护策略,可将多种高功率脉冲武器和传感器集成到军舰中。减少在船舶使用寿命期间集成新负载所需的工程工作量。技术挑战/风险:当故障电流以高 di/dt 上升时,通过协调多个电流读数来最大限度地减少误报,特别是在支持脉冲功率负载的总线拓扑中。证明 MVDC 电流传感器的稳健性和可靠性。通过简化在船舶使用寿命期间集成新负载所需的工作量来实现灵活性。
由无源元件组成的电路元件对于实现高能量和功率密度具有重要意义,并且电路的研究结果接近准确。本文阐明了在不同应用中实现高电导率、电感和电容值的可能方法,并讨论了它们的组合。主要目标是获得高电感、电容和电导值。超级电容器是一种适用于脉冲功率应用的脉冲装置,其技术已在各种应用中得到充分认可。然而,超级电感的概念很新,它可以为大量应用开辟可能性。本文旨在通过对超级电容器和超导体超级电感的分析方法,简要介绍和提供有关实现超级电感的可能性的信息,概述相对磁导率和电感值、优点和应用。
NNSA 的 ICF 计划拥有三座独一无二的世界领先科学设施,即劳伦斯利弗莫尔国家实验室 (LLNL) 的国家点火装置 (NIF)、桑迪亚国家实验室的 Z 脉冲功率装置 (Z) 和罗彻斯特大学激光能量学实验室 (LLE) 的欧米茄激光装置 (OMEGA)。这三座互补的设施是美国唯一能够研究宏观高能密度 (HED) 科学的设施。此外,洛斯阿拉莫斯国家实验室为聚变点火贡献了新方法,而每个实验所需的复杂靶材均由通用原子公司开发和制造。靶材质量和创新继续成为三座主要 ICF 设施性能提升的重要推动力。
摘要 — 使用有限元频域代码 ANSYS HFSS 和粒子单元 (PIC) 代码 MAGIC 设计和模拟了循环平面正交场放大器 (RPCFA)。RPCFA 是一种高功率微波装置,改编自美国密歇根州安娜堡密歇根大学开发的循环平面磁控管。平面、曲折线和慢波结构的电磁 (EM) PIC 模拟显示,1.3 MW、3 GHz 信号可放大 13.5 dB 至约 29 MW。RPCFA 设计为由密歇根电子长束加速器-陶瓷绝缘体的脉冲功率驱动,该加速器目前配置为输出 −300 kV、1-10 kA 的脉冲,脉冲长度为 0.3-1 µ s。 RF 输入驱动信号将由 MG5193 磁控管提供,该磁控管可在 3 GHz 频率下提供高达 2.6 MW 的 5 µ s 脉冲。EM PIC 模拟还展示了设计的零驱动稳定性,并用于评估由于几个实验参数的变化而导致的性能变化。驱动频率的变化表明 RPCFA 的 3 dB 放大带宽预计为 300 MHz 或 10%。
对于 LiDAR 系统,波长稳定、大面积和弱锥形脊型波导激光器已经开发出单个和多个有源区外延堆叠在一个公共垂直波导中,作为单发射器或多发射器设备,功率分别高达 200 W 和 2 kW。这些设备的设计工作温度范围为 -35 °C 至 85 °C。由于其良好的光束质量,它们可用于扫描应用(即与 MEMS 一起使用);3 发射器设备的发射可通过 Beamtwisters® 进行组合。集成表面布拉格光栅可确保光谱宽度远低于 0.5 nm。波长随温度的变化低至 0.06 nm/K。10 mm 宽的激光条带有 48 个发射器,可提供高达 2 kW 的更高功率,重复率在 10 kHz 至 150 kHz 之间。这些激光条在脉冲功率为 1.3 kW(脉冲宽度为 10 ns,重复频率为 10 kHz)的情况下长期运行,在 3.6 x 10 11 个脉冲之后性能没有下降。