I. 引言 该项目是在阿根廷巴伊亚布兰卡国家科技大学 (National Technology University) 的数字技术 III 课程框架内开发的,作为该学科的最终项目,目的是促进学习基于快速傅里叶变换 (FFT)、有限脉冲响应 (FIR) 型和无限脉冲响应 (IIR) 型数字滤波器以及实时操作系统的频谱分析仪的操作。由于该课程涉及嵌入式系统的大量工作,因此决定在 Cortex M4 微控制器上实现该系统,并通过专用于此目的的外围设备执行信号的采集、处理和分析。 FreeRTOS操作系统也被用作软件开发的基础。
摘要 本研究使用结构向量自回归 (SVAR) 模型分析了世界石油价格冲击对印度尼西亚国内经济的影响。所用变量分为两组。第一组描述世界石油市场,包括世界石油产量、世界经济活动和世界石油价格。第二组描述国内经济,包括 GDP、CPI、折现率和印尼盾汇率等变量。使用该模型可以消除在小型开放经济国家使用 VAR 模型的研究中常见的脉冲响应异常或困惑,例如价格困惑和汇率困惑。估计结果表明,世界石油价格冲击对国内经济产生显著影响。脉冲响应结果表明,世界石油价格引起的冲击在期初响应不同,但从长期来看会回到平衡线。
ADC:模数转换器 AHRS:姿态航向参考系统 CAN(总线):控制器局域网 DHCP:动态主机配置协议 DVL:多普勒速度计 EKF:扩展卡尔曼滤波器 EEPROM:电可擦可编程只读存储器 FIR:有限脉冲响应(滤波器) FTP:文件传输协议 FS:全量程 FOG:光纤陀螺仪 GNSS:全球导航卫星系统 GPS:全球定位系统 IIR:无限脉冲响应(滤波器) IMU:惯性测量单元 INS:惯性导航系统 IP:互联网协议 LBL:长基线 MAC(地址):媒体访问控制 MEMS:微机电系统 NED:东北向下(坐标框架) NA:不适用 NMEA(NMEA 0183):国家海洋电子协会(标准化通信协议) PPS:每秒脉冲(信号) RAM:随机存取存储器 RMA:返回商品授权 RMS:均方根 RTCM:海事无线电技术委员会(协议) RTK:实时运动学 SI:国际单位制 TBD:待定义 TCP:传输控制协议 UDP:用户数据报协议 UTC:协调世界时 USBL:超短基线 VRE:振动校正误差 WGS84:世界大地测量系统 1984 WMM:世界磁模型
ADC:模数转换器 AHRS:姿态航向参考系统 CAN(总线):控制器局域网 DHCP:动态主机配置协议 DVL:多普勒速度计 EKF:扩展卡尔曼滤波器 EEPROM:电可擦可编程只读存储器 FIR:有限脉冲响应(滤波器) FTP:文件传输协议 FS:全量程 FOG:光纤陀螺仪 GNSS:全球导航卫星系统 GPS:全球定位系统 IIR:无限脉冲响应(滤波器) IMU:惯性测量单元 INS:惯性导航系统 IP:互联网协议 LBL:长基线 MAC(地址):媒体访问控制 MEMS:微机电系统 NED:东北向下(坐标框架) NA:不适用 NMEA(NMEA 0183):国家海洋电子协会(标准化通信协议) PPS:每秒脉冲(信号) RAM:随机存取存储器 RMA:返回商品授权 RMS:均方根 RTCM:海事无线电技术委员会(协议) RTK:实时运动学 SI:国际单位制 TBD:待定义 TCP:传输控制协议 UDP:用户数据报协议 UTC:协调世界时 USBL:超短基线 VRE:振动校正误差 WGS84:世界大地测量系统 1984 WMM:世界磁模型
1. 控制系统设计。控制系统的基本组件和系统配置。2. 系统的标准数学模型:输入输出模型、状态空间模型。3. 动态系统线性化与雅可比矩阵评估。4. 框图变换:串联、并联和反馈连接。5. 系统的结构特性:可控性和可观测性。6. 一阶和二阶系统:传递函数、阶跃响应、脉冲响应。7. 连续时间系统的稳定性:定义、s 平面根位置、Routh-Hurwitz
关键词:可编程光子集成电路、相位恢复、稳健表征 摘要:光子集成电路 (PIC) 提供超宽光学带宽,可为信号处理应用提供前所未有的数据吞吐量。动态可重构性可以补偿制造缺陷和波动的外部环境,调整自适应均衡和训练光学神经网络。PIC 重构的初始步骤需要测量其动态性能,通常由其频率响应描述。虽然测量幅度响应很简单,例如使用可调激光器和光功率计,但由于各种因素(包括测试连接中的相位变化和仪器限制),测量相位响应存在挑战。为了应对这些挑战,提出了一种通用且稳健的表征技术,该技术使用耦合到信号处理核心 (SPC) 的片上参考路径,其延迟大于或小于信号处理路径上的总延迟。芯片功率响应的傅里叶变换揭示了 SPC 的脉冲响应。该方法对低参考路径功率和不精确的延迟更具鲁棒性。使用有限脉冲响应 (FIR) 结构的实验证明了快速 SPC 训练,克服了热串扰和设备缺陷。这种方法为 PIC 特性提供了一种有前途的解决方案,有助于加快物理参数训练,以用于通信和光学神经网络中的高级应用。
在当前全球化时代,技术发展非常迅速。它的特征是存在可以促进人类活动的工具或功能。通信部门也不例外。现在,人类可以轻松地进行远程交流。信号通信作为传输信息的媒介起着重要作用。但是,在发送信息的过程中,信号永远不会摆脱干扰或噪音。噪声可能导致收到的信息不匹配发送的信息。为了使信号符合需求和欲望,它需要一个过滤器才能从噪声中清除信号。过滤器是通过或过滤输入信号的设计,使传入信号与所需的频率匹配。然后有两种过滤器,即数字过滤器和模拟过滤器。这些过滤器中的每一个都有其优势和缺点。在这项工作中,我们将讨论数字过滤器的实现。数字过滤器具有离散信号输入。与模拟过滤器相比,数字过滤器的优点是,数字过滤器更易于更改和可编程,因为数字过滤器具有内存和处理器,而模拟过滤器只是电路,这意味着如果您想更换过滤器,则必须更改电路。数字过滤器更容易与计算机实现和接口。然后,数字过滤器的特性比模拟滤镜更稳定,具体取决于连接的计算机。与有两种类型的数字过滤器,即FIR(有限脉冲响应)和IIR(无限脉冲响应)。
摘要:便携式多媒体设备和通信系统的蓬勃发展,对节省面积和功耗的高速数字信号处理 (DSP) 系统的需求也随之增加。有限脉冲响应 (FIR) 滤波器是设计高效数字信号处理系统的重要组成部分。数字有限脉冲响应 (FIR) 滤波器的使用是 DSP 中的主要模块之一。数字乘法器和加法器是 FIR 滤波器中最关键的算术功能单元,也决定了整个系统的性能。因此,低功耗系统设计已成为主要的性能目标。本文提出了一种使用超前进位加法器和乘法器设计的 FIR 滤波器。其中乘法器由改进型超前进位加法器的内部电路提出。超前进位加法器 (CLA) 用于加法运算,它使用最快的进位生成技术,通过减少修复进位位所需的时间来提高速度,而乘法器则以分层方式执行乘法过程。因此,所提出的方法可以最大限度地降低 FIR 滤波器的有效功率和延迟。初步结果表明,与传统方法相比,使用所提出的乘法器方法的 FIR 滤波器实现了更少的延迟和功率降低。所提出的 FIR 滤波器使用 Verilog 代码进行编程,并使用 Xilinx ISE 14.7 工具进行综合和实现。并使用 Xpower 分析器分析功率。关键词:进位前瞻加法器、FIR 滤波器、乘法器、数字信号处理
•2016年夏季的奥克兰大学罗切斯特大学罗切斯特大学研究员◦研究对物理层安全性的攻击:阅读论文和观察的与安全性有关的研讨会,同时在物理层安全性的领域以及从传播器和接收器之间的通道和接收器之间提取加密操作的秘密密钥的领域进行了深入研究。◦开发攻击:使用MATLAB的统计学习包使用的机器学习,以尝试预测频道脉冲响应,使用周围接收器对给定发射器进行的测量值。
自动摩托车是一种双轮的车辆,可以在不干预的情况下移动。它使用传感器,相机和算法的组合来检测其环境并决定如何移动。本文显示了使用模糊逻辑对自动摩托车控制的比较,而LQR计数器控制器内置了MATLAB,并在带有微控制器的嵌入式系统中实现。执行了为此目的构建的原型的轨迹跟踪和平衡稳定。可以确定LQR控制如何在稳定中以角度变化表示的脉冲响应前面的模糊逻辑控制前面具有良好的行为。关键字:自动摩托车,轨迹跟踪,平衡稳定,模糊逻辑,LQR 1。简介