在50 kHz 8 w时为50 kHz 5 w时355 nm的平均功率为50 kHz 8 w,在50 kHz 10 w时为50 kHz脉冲能量20 µj,在50 kHz 100 µj下为50 kHz 160 µj,在50 kHz 200 kHz脉冲宽度为50 kHz脉冲宽度为50 kHz的速度为50 kHz 20 ns 20 ns 20±4 ns pulse at 50 kHz 160 µj kHz (option up to 300 kHz) Pulse-to-pulse stability 2 < 2% rms Long term power stability 3 < 2% rms Beam spatial mode TEM 00 M 2 < 1.1 Beam pointing stability < 20 µrad Beam divergence < 2.5 mrad Beam roundness ~90% Beam diameter, at exit ~0.3 mm ~0.4 mm Polarization ratio Horizontal; 100:1操作规格和系统特性接口RS232,以太网,软件GUI,外部TTL触发热身时间<待机时间<5分钟,距离冷启动电气需求100-240 V AC <10分钟;或15 V DC,13.4线频率50-60 Hz环境温度4环境10°C至30°C(50°F至86°F)的工作范围,在50 kHz 8 w时为50 kHz 5 w时355 nm的平均功率为50 kHz 8 w,在50 kHz 10 w时为50 kHz脉冲能量20 µj,在50 kHz 100 µj下为50 kHz 160 µj,在50 kHz 200 kHz脉冲宽度为50 kHz脉冲宽度为50 kHz的速度为50 kHz 20 ns 20 ns 20±4 ns pulse at 50 kHz 160 µj kHz (option up to 300 kHz) Pulse-to-pulse stability 2 < 2% rms Long term power stability 3 < 2% rms Beam spatial mode TEM 00 M 2 < 1.1 Beam pointing stability < 20 µrad Beam divergence < 2.5 mrad Beam roundness ~90% Beam diameter, at exit ~0.3 mm ~0.4 mm Polarization ratio Horizontal; 100:1操作规格和系统特性接口RS232,以太网,软件GUI,外部TTL触发热身时间<待机时间<5分钟,距离冷启动电气需求100-240 V AC <10分钟;或15 V DC,13.4线频率50-60 Hz环境温度4环境10°C至30°C(50°F至86°F)的工作范围,在50 kHz 8 w时为50 kHz 5 w时355 nm的平均功率为50 kHz 8 w,在50 kHz 10 w时为50 kHz脉冲能量20 µj,在50 kHz 100 µj下为50 kHz 160 µj,在50 kHz 200 kHz脉冲宽度为50 kHz脉冲宽度为50 kHz的速度为50 kHz 20 ns 20 ns 20±4 ns pulse at 50 kHz 160 µj kHz (option up to 300 kHz) Pulse-to-pulse stability 2 < 2% rms Long term power stability 3 < 2% rms Beam spatial mode TEM 00 M 2 < 1.1 Beam pointing stability < 20 µrad Beam divergence < 2.5 mrad Beam roundness ~90% Beam diameter, at exit ~0.3 mm ~0.4 mm Polarization ratio Horizontal; 100:1操作规格和系统特性接口RS232,以太网,软件GUI,外部TTL触发热身时间<待机时间<5分钟,距离冷启动电气需求100-240 V AC <10分钟;或15 V DC,13.4线频率50-60 Hz环境温度4环境10°C至30°C(50°F至86°F)的工作范围,
注:1、数据是在 2OZ 铜厚的 1 平方英寸 FR-4 板上贴片测试得到的。 2、数据是在脉冲方式下测试得到的,脉冲宽度 ≦ 300us ,占空比 ≦ 2% 3、EAS 数据显示最大额定值,测试条件为 VDD=-72V,VGS=-10V,L=0.1mH,IAS=-25A 4、功耗受 150 ℃ 结温限制 5、数据理论上与 ID 和 IDM 相同,实际应用时应受总功耗限制
摘要:无标签和多光子微观镜检查可以通过在癌症等疾病中提供诊断成像和手术治疗的原位工具来改变临床组织病理学。基于多光子成像的微观内镜装置的关键是光纤,用于无失真,有效地递送超短激光脉冲到样品和有效的信号收集。在这项工作中,我们研究了新的空心核心(充气)双层抗谐振纤维(DC-ARF)作为多光子微观内镜的高性能候选者。我们将DC-ARF的纤维特性与单层抗谐振纤维(SC-ARF)和固体芯纤维(SCF)进行比较。在这项工作中,而DC-ARF和SC-ARF启用低损失(<0.2 dbm-1),接近无散的激发脉冲输送(<10%脉冲宽度<10%脉冲宽度在900 nm / 1 m纤维中的脉冲宽度增加,而没有任何诱导的非线性,则在光谱宽宽和脉冲范围内导致ESCF(ecf)在> 2000 persthing> 2000 persth>> 2000 pers persth> 2000 pers ecf ins ecf ins ecf中,> 2000 e>> 2000 ex ex>> 2000 n 00 perss ef pers pers>> 2000 e;理想的光纤内窥镜需要长几米,并且应该通过纤维进行激发和收集。因此,我们在后散射的几何形状中对内窥镜兼容的1 m和3 m长度的纤维长度进行了多光子成像,其中直接收集了信号(未散布的检测)或通过纤维(降压检测)收集信号。第二次谐波图像是从钛酸钡晶体以及生物样品(小鼠尾部)中收集的。在非划定的检测条件下,ARF在图像的信噪比方面最多优于SCF 10次。显着,仅由于DC-ARF的高数值孔径(Na)为0.45和广泛的带宽(> 1 µm),才能在脱扫描的检测构型中提供图像,以进行内窥镜检查。因此,我们在不同图像收集配置下对不同光纤的系统表征和比较,确认并确定了DC-ARF的实用性,用于基于无标签的基于无标记的多光子成像。
LFC内部的柱塞类型控制阀由脉冲宽度调节(PWM)信号控制,该信号实际上会改变施加到该阀的平均能量。没有电力的弹簧迫使柱塞向下推动阀座上的精密密封,以可靠地关闭。随着能量被添加到电路中,柱塞会在弹簧上升高,并允许液体流量增加。控制阀的设计针对摩擦进行了优化,并根据用户的确切程序参数进行大小。
根据杂波情况和电子对抗 (ECM) 威胁,雷达在 32 脉冲突发和脉冲多普勒信号处理、4 脉冲突发和移动目标指示处理或脉冲到脉冲捷变之间选择其频率捷变模式。脉冲重复频率和脉冲宽度的选择取决于目标的接近程度。数字接收器与改进的信号处理相结合,使脉冲长度和波形具有更高的灵活性,例如,用于适应新的威胁。
输出功率@3.3VDC (mW, CW) >1, 10, 20, …,200 >200, 300, …,500 功率可通过软件调整 功率稳定性 (rms, 4 小时以上) <3%, <2%, <1% 脉冲宽度 (FWHM) >10ns, 20ns, …,10ms >12ns, 13ns, …,10ms 横模 近 TEM 00 幅度噪声 (rms, CW) <1% M 2 因子 <1.2 光圈处光束直径 (1/e 2 ,mm) ~1.2 光束发散度, 全角度 (mrad) <1.0
最大范围: 300 m @ 330 kHz, 100 m @ 675 kHz, 50 m 1000 kHz 最小范围: 0.5 m 范围分辨率: ≥3.75 mm (可变, 由发射脉冲宽度决定) 采样选项: 238, 476, 952, 1904 (低分辨率, 高分辨率, 缩放 x 2, 缩放 x 4) 采样分辨率: 0.26 mm (0.5 m 范围 @1904 个采样), 21 mm (10 m 范围 @ 476 个采样) 扫描速度: 典型: 3.7 秒/360° @ 5 m 和 1.8° 步长 (@ 460 kbps) 标称: 34 秒/360° @ 100 m 和 1.8° 步长 (@ 460 kbps) 扫描角度: 360°连续扫描)步长:0.45° - 7.2(用户可选)发射脉冲宽度:5 µs 至 1000 µs(自动选择以优化操作)接收带宽:基于“宽”设置:493 kHz(0.5 m 范围)、109 kHz(10 m 范围)遥测:RS485 或 RS232 异步串行数据固定下行链路:9600 bps 至 921 kbps(用户选择与其他串行通信设备兼容)优化下行链路:9600 bps 至 921 kbps(自动设置为遥测链路质量允许的最高速率)
以下警告适用于此神经刺激系统。怀孕和哺乳。尚未确定在怀孕和哺乳期间使用神经刺激的安全性和有效性。如果患者正在怀孕或哺乳,则不应使用此神经刺激系统。磁共振成像 (MRI)。不要对植入了此系统的任何神经刺激器或导线(或导线的任何部分)的患者进行 MRI。即使神经刺激器已被移除,如果导线的任何部分或颅骨假体仍植入,患者也不应进行 MRI。神经刺激系统是 MR 不安全的。尚未进行测试以确定使用条件以确保神经刺激系统在 MR 环境中的安全性。高刺激输出和电荷密度限制。避免过度刺激。使用高振幅和宽脉冲宽度的参数设置存在脑组织损伤的风险。只有在充分考虑有关电荷密度的警告后,才应编程高振幅和宽脉冲宽度。可以对系统进行编程以使用临床研究中使用的参数设置范围之外的参数设置。如果刺激参数的编程超出了 30 μC/cm 2 的电荷密度限制,则会出现一个屏幕警告您电荷密度过高。可以通过降低刺激来降低电荷密度
数据记录从菜单栏中选择文件 | 记录,ADC 数据可以记录到 .csv 文件中,可以使用文件 | 定时数据收集选项收集特定时间的数据,时间范围从 5 到 60 秒。设置所需配置后,按“开始监控”按钮捕获数据。每个数据集的标题包括采样率、LED 电流、脉冲宽度和模式的设置。如果文件名未更改,后续数据收集将附加到现有文件并包含新标题。
应用示例 ................................................................................................................ 37 进行简单测量 .............................................................................................................. 38 使用自动量程检查一系列测试点 .............................................................................. 43 使用隔离通道分析差分通信信号 .............................................................................. 44 查看数学瞬时功率波形 ............................................................................................. 45 进行光标测量 ............................................................................................................. 46 分析信号细节 ............................................................................................................. 50 捕获单次信号 ............................................................................................................. 51 测量传播延迟 ............................................................................................................. 53 特定脉冲宽度触发 ............................................................................................................. 54 视频信号触发 ............................................................................................................. 55 查看网络中的阻抗变化 ............................................................................................. 59 数学 FFT ............................................................................................................. 61 设置时域波形 .............................................................................................