我们研究了超音速(> 1 GHz)声子波包对半导体超晶格中电子传输的影响。我们的量子力学模拟表明,通过超晶格传播的 GHz 皮秒变形应变脉冲序列可以产生频率比应变脉冲序列高几倍的电流振荡。计算出的电流脉冲的形状和极性与实验测量的电信号非常吻合。计算还解释并准确地再现了感应电流脉冲幅度随应变脉冲幅度和施加的偏置电压的变化。我们的研究结果为开发声驱动的半导体超晶格作为毫米和亚毫米电磁波源开辟了一条道路。
缩写 AIS = 简明损伤量表;AMP = ICP 脉冲幅度;AU = 任意单位;AUC = 曲线下面积;CENTER-TBI = 欧洲创伤性脑损伤神经创伤效果合作研究;CT = 计算机断层扫描;FFT = 快速傅里叶变换;GCS = 格拉斯哥昏迷量表;GOSE = 格拉斯哥扩展预后量表;HFC = 高频质心;HHC = 高次谐波质心;ICP = 颅内压;ICU = 重症监护病房;IQR = 四分位距;ISS = 损伤严重程度评分;MANOVA = 多元方差分析;MLS = 中线移位;PRx = 压力反应指数;PSI = 脉搏形状指数;ResNet = 残差神经网络;ROC = 受试者工作特征;TBI = 创伤性脑损伤。提交于 2022 年 6 月 27 日。接受于 2022 年 10 月 28 日。引用时请注明 2022 年 12 月 23 日在线发布;DOI:10.3171/2022.10.JNS221523。
神经形态计算最近已成为传统的von Neumann计算机范式的潜在替代方法,该范式由于其建筑瓶颈而固有地受到限制。因此,需要新的人工组件和用于脑启发的计算硬件实现的架构。双极模拟熟悉设备,其电阻(或电导)可以连续调节(作为突触重量),是人工突触应用的潜在候选者。在这项工作中,混合离子电子导电氧化物(La 2 NiO 4+δ,L2NO4)与TIN和PT电极结合使用。TIN/L2NO4/PT设备显示双极电阻开关,以及用于集合和复位过程的逐渐过渡。电阻(电导)可以通过脉冲幅度和持续时间逐渐调节,显示出良好的数据保留特征。通过实验测量电阻变化和总应用脉冲持续时间之间的线性关系。此外,突触抑郁和增强特征是生物共生的重要功能之一,是为这些设备人为复制的,然后在尖峰神经网络环境中进行了建模并成功测试。这些结果表明使用TIN/L2NO4/PT回忆设备作为神经形态计算中的长期人造突触的适用性。
摘要 — 量子计算是解决传统硬件上难以计算的问题的最有前途的新兴技术之一。现有的大量研究集中在使用门级变分量子算法进行机器学习任务,例如变分量子电路 (VQC)。然而,由于参数数量有限,VQC 的灵活性和表达能力有限,例如,在一个旋转门中只能训练一个参数。另一方面,我们观察到量子脉冲在量子计算堆栈中低于量子门,并提供更多控制参数。受 VQC 良好性能的启发,本文提出了变分量子脉冲 (VQP),这是一种直接训练量子脉冲以完成学习任务的新范式。所提出的方法通过在优化框架中拉动和推动脉冲幅度来操纵变分量子脉冲。与变分量子算法类似,我们训练脉冲的框架在嘈杂的中型量子 (NISQ) 计算机上保持了对噪声的鲁棒性。在二分类示例任务中,与 qiskit 脉冲模拟器(使用来自真实机器的系统模型)和 ibmq-jarkata 上的 VQC 学习相比,VQP 学习分别实现了高达 11% 和 9% 的准确率,证明了其有效性和可行性。在存在噪声的情况下,VQP 获得可靠结果的稳定性也得到了验证。索引术语 — 变分量子电路、量子计算、量子机器学习、变分量子脉冲、量子最优控制
随着电动汽车(EV)的运营寿命终结,其电池保留了巨大的经济价值,并为二人使用和物质回收提供了有希望的机会。这对于全球南部和其他欠发达地区特别有说服力,在这里,可靠的能源存储对于解决弱甚至不存在的电网和能源基础设施所带来的关键挑战至关重要。,尽管存在这种潜力,但围绕第二次生命电池的技术性能,安全性和重新认证的严重不确定性阻碍了广泛的采用。在重新部署它们的情况下,估计和实际性能之间的不匹配通常会使电池在技术上不合适或危险,从而使他们成为打算受益的社区的责任。这种严重的未对准加剧了能源访问差异,并破坏了能源正义的更广泛的愿景,强调了迫切需要强大而可扩展的解决方案以释放潜力。在Pulsebat数据集中,作者测试了464个退休的锂离子电池,涵盖了3种阴极材料类型,6种历史用法,3种物理格式和6种容量设计。对每个第二寿命电池进行重复进行脉冲测试实验,其脉冲宽度,10个脉冲幅度,多重电荷和健康状况,例如,从0.37到1.03(由于不一致而导致的名义容量)。pulsebat数据集的一部分用于自然通信出版物,该出版物解决了在随机分布状态的收费状态下解决了最先进的估计问题1。PulseBat数据集记录了这些测试条件,电压响应以及受注入的脉冲电流约束的温度信号,这些脉冲电流可用作关键诊断任务的宝贵数据资源,例如电荷估计,最新估计,最先进的健康估计,PORTODE材料类型识别,开放式电流电流重新构造,热管理,热管理,以及其他。
高级电子学学分 3-0-0:3 课程教育目标: COE1 让学生熟悉先进的电子设备及其应用。 COE2 培养对数字电路设计和使用微控制器连接简单系统的理解。 COE3 培养对通信系统的理解。 UNIT-1 9 L 半导体器件:载流子的漂移和扩散、电荷的产生和复合、直接和间接半导体。PN 结、二极管方程、PN 结的势垒宽度和电容、变容二极管、开关二极管、作为开关和放大器的 FET、光电器件:LED、二极管激光器、光电探测器和太阳能电池。 UNIT-2 9 L 先进电子设备:金属氧化物场效应晶体管 (MOSFET)、MOSFET 中的短沟道效应、鳍式场效应晶体管 (FinFET)、铁电场效应器件和 2D 纳米片器件;新兴存储设备:DRAM、ReRAM、FeRAM 和相变存储器 (PCM) 以及通用存储设备。UNIT-3 10 L 模拟系统:锁相环及其应用频率倍增;模拟乘法器及其应用;对数和反对数放大器;仪表放大器;传感器:温度、磁场、位移、光强度和力传感器组合电路设计:编程逻辑器件和门阵列、7 段和 LCD 显示系统、数字增益控制、模拟多路复用器、基于 PC 的测量系统;序贯电路设计:不同类型的 A/D 和 D/A 转换技术、TTL、ECL、MOS 和 CMOS 操作和规格。 UNIT-4 9 L 通信系统:通信系统的概念、电磁频谱的作用、通信系统术语的基本概念、调制的必要性、幅度、频率、脉冲幅度、脉冲位置、脉冲编码调制、通信系统中的信息、编码、脉冲调制的类型、脉冲宽度调制 (PWM)、脉冲位置调制 (PPM)、脉冲编码调制 (PCM) 的原理;数字通信简介。参考书:
* 通讯作者。电话 + 7 921 786 18 03;电子邮件:agkolosko@mail.ru 摘要 开发了一种用于记录和模拟复杂场发射实验的方法。该方法包括处理三种类型的数据流:场阴极电特性数据(电压和电流脉冲)、场发射投影仪数据(辉光图案)和飞行时间质谱仪数据(测量室中挥发性产物的质谱)。LabView 软件环境实现了一种同步再现多通道实验数据的算法,并可以实时处理这些数据。该程序有一套内置的软件工具,可以实现功能并多次重复实验,在指定的时间点暂停,以及在模拟中更改时间流速。通过研究基于碳纳米管的纳米复合场阴极的场发射的例子证明了该方法的能力。关键词 碳纳米管;场发射;多通道数据收集;在线处理;实验模拟。 © AG Kolosko, VS Chernova, SV Filippov, EO Popov, 2020 简介 获取、存储和处理实验数据的方法是实验物理学不可或缺的一部分。这些方法随着计算机和测量设备的发展而不断发展。如今,高速记录和数据记录手段可以接收大量信息。因此,例如,使用放射性粒子传感器的高速记录来研究热核反应堆(ITER)等离子体中发生的过程 [1]。另一方面,现代计算系统允许在线数据处理,将记录的信息量减少了几个数量级。在线处理还允许控制实验系统随时间和实验条件变化时的行为,例如,记录场发射器(电流脉冲)响应的幅度,电压脉冲幅度急剧增加 [2]。本文描述的场发射实验是一类特殊的实验,其实施需要创建真空
阿尔及利亚康斯坦丁国立理工学院君士坦丁综合电气实验室 (LGEPC) (1) 阿尔及利亚博尔吉布阿拉里季大学科学技术学院 ETA 实验室 (2) 阿尔及利亚乌姆布阿吉大学电子系 (3) ORCID:1.0000-0001-5458-7757;2.0000-0002-1292-7087;3.0000-0003-2599-3304 doi:10.15199/48.2024.11.07 使用 R 峰位置斜率进行心室颤动期间的心脏频率研究摘要。本文介绍了一种直接从 R 峰位置估计心率的新方法,该方法旨在提出和解释一种基于曲线斜率的新方法,该方法重现了 R 峰相对于其各自指数的位置,用于评估患者在心室颤动期间 RR 时间序列动态的差异。该技术的目标是通过目视检查心率变化来评估正常和心室颤动期间的心率。主要目的是验证斜率与心跳类型变化之间的关系。所提出方法的最大优点是只需参考斜率的变化即可识别心室颤动的发作时间。因此,有必要从 QRS 复合波检测算法开始,以找到 R 峰的位置。使用克雷顿大学室性心动过速标准数据库 (CUDB) 对该技术进行评估。Streszczenie。 W niniejszej pracy przedstawiono nową methodę szacowania częstości akcji serca bezpośrednio z pozycji pików R. Celem tej pracy jest przedstawienie iterpretacja nowatorskiej metody opartej na nachyleniu krzywej odtwarzającej R 与 funkcji ich odpowiednich wskaźników、co służy do oceny różnic 和动态 szeregów czasowych RR u pacjentów z migotaniem komór。 Celem tej techniki jest ocena częstości akcji serca podczas uderzeń normalnych i migotania komór poprzez wizualną kontrolę zmian częstości akcji serca. Głównym celem jest sprawdzenie związku pomiędzy nachyleniem a zmianą typepu rytmu serca。 Największą zaletą proponowanej 方法开玩笑 rozpoznanie czasu wystąpienia migotania komór poprzez proste odniesienie się do zmiany nachylenia。 Dlatego konieczne jest rozpoczęcie od algorytmu wykrywania zespołów QRS, aby znaleźć położenie pików R. Ocenę tej techniki przeprowadza się z wykorzystaniem standardowej bazy danych tachyarytmii komorowej克赖顿大学 (CUDB)。 (( Badanie częstotliwości serca podczas migotania komór przy użyciu nachylenia położenia szczytu R ) 关键词:心电图、R 峰值检测、心室颤动、斜率、心频率、心率。 Słowa kluczowe:心电图、wykrywanie szczytu R, migotanie komór、nachylenie、częstość akcji serca、częstość akcji serca。简介 心血管疾病是过去十年中全球一半以上人口死亡的最常见原因。因此,诊断和治疗这些危险疾病似乎是一项至关重要的任务。在心脏病学中,心电图 (ECG) 信号仍然是诊断和分析心律失常最普遍和最广泛使用的工具之一。ECG 检查实际上是医生使用接触皮肤的外部电极来探索心脏功能的一种非侵入性工具。该信号反映了心脏的电活动,除了某些间隔和节段外,它还汇集了三种主要波:P、QRS 和 T。通常,不同波长的持续时间和形状被认为是某些心脏异常的迹象 [1, 2]。心脏病患者猝死的主要原因之一是心室颤动 (VF)。这是一种恶性心律失常,特征为心跳过快、心室心肌收缩不协调 [3, 4, 5, 6]。VF 通常通过患者的 ECG 数据进行诊断。它呈现为形状不规则、脉冲幅度不等的正弦信号(图 1)。在这种情况下,心率可能在每分钟 240 到 600 次 (bpm) 之间或更高 [7]。心率会根据用力、情绪等因素而增加或减慢。在休息时,心率可能会降至 45 bpm,而在发烧或情绪激动时,心率可能会超过 100 bpm。在运动期间,心率与运动强度直接相关,最大用力会使心率加速到 180 bpm。因此,正常变化与心律失常之间的区分并不严格,除非频率非常高。这项工作的目的与通过检测 QRS 波群和心率变异性 (HRV) 计算心率密切相关。这些 QRS 波群的位置是通过使用检测器获得的这是一种恶性心律失常,特征为心跳过快、心室心肌收缩不协调 [3, 4, 5, 6]。VF 通常通过患者的 ECG 数据进行诊断。它呈现为形状不规则、脉冲幅度不等的正弦信号(图 1)。在这种情况下,心率可能在每分钟 240 到 600 次 (bpm) 之间或更高 [7]。心率会根据用力、情绪等因素而增加或减慢。在休息时,心率可能会降至 45 bpm,而在发烧或情绪激动时,心率可能会超过 100 bpm。在运动期间,心率与运动强度直接相关,最大用力会使心率加速到 180 bpm。因此,正常变化与心律失常之间的区分并不严格,除非频率非常高。这项工作的目的与通过检测 QRS 波群和心率变异性 (HRV) 计算心率密切相关。这些 QRS 波群的位置是通过使用检测器获得的这是一种恶性心律失常,特征为心跳过快、心室心肌收缩不协调 [3, 4, 5, 6]。VF 通常通过患者的 ECG 数据进行诊断。它呈现为形状不规则、脉冲幅度不等的正弦信号(图 1)。在这种情况下,心率可能在每分钟 240 到 600 次 (bpm) 之间或更高 [7]。心率会根据用力、情绪等因素而增加或减慢。在休息时,心率可能会降至 45 bpm,而在发烧或情绪激动时,心率可能会超过 100 bpm。在运动期间,心率与运动强度直接相关,最大用力会使心率加速到 180 bpm。因此,正常变化与心律失常之间的区分并不严格,除非频率非常高。这项工作的目的与通过检测 QRS 波群和心率变异性 (HRV) 来计算心率密切相关。这些 QRS 波群的位置是通过使用检测器获得的