1.简介 美国国家标准与技术研究所 (NIST) 有一项服务 [1],用于测量高速 (脉冲持续时间 < 1 ns) 脉冲发生器的输出。这项服务,服务编号为 651OOS,提供脉冲频谱幅度参数的估计值 [2]。此术语的其他使用名称包括:频谱幅度、电压频谱、脉冲强度、频谱强度、脉冲频谱强度、脉冲面积和频谱密度。这项服务的主要应用是测量用于电磁干扰发射和抗扰度测试的脉冲发生器的脉冲频谱幅度。然而,随着校准程序的改进,651OOScan 现在通过提供超宽带 (UWB) 信号频谱幅度参数的测量来支持超宽带电子界。UWB 信号的时域脉冲参数,例如脉冲宽度、过渡持续时间等。调制包络,可以使用 NIST 的 65200S 和 65250S 脉冲测量服务进行测量。
抽象的碳化硅陶瓷由于其高抗压强度,高硬度和低密度而被广泛用于装甲保护。在本研究中,开发了一种基于板块影响技术的实验技术来测量陶瓷材料的拉伸强度。由于陶瓷的强度不通过动态载荷对应变速率高度敏感,因此使e效率保持在失败位置保持恒定的应变速率。数值模拟被用于设计几种波动加工的板层的几何形状,该板在冲击时会产生脉冲形的压缩波,平滑的上升和下降时间范围为0.65至1 µs。这种减震板损坏的实验是在设定在200至450 m/s之间的撞击速度的SIC陶瓷上进行的。多亏了激光干涉法分析,目标后面速度可在给定的应变率载荷下测量均方根骨架强度。使用脉冲载荷和实验确定的脉冲强度,通过弹性塑料数值模拟评估了故障区中的应变速率。在适当的板板设计时,发现板撞击技术可以正确控制良好的应变速率载荷,左右在10 4 -10 5 s-1左右,可以达到相对较长的上升时间。这项工作有望提供合适的工具来研究陶瓷材料的高应变率行为。
主动系统采用近红外脉冲激光和快速门控探测器,目前已用于大多数远程成像应用。这一概念通常称为突发照明激光雷达或 BIL。SELEX 固态探测器基于 HgCdTe 雪崩光电二极管阵列和定制设计的 CMOS 多路复用器,用于执行快速门控和光子信号捕获。这些混合阵列产生的灵敏度低至 10 个光子,这主要是由于 HgCdTe 二极管中非常高且几乎无噪声的雪崩增益。激光门控成像的优势之一是将物体从背景中分割出来,从而提供信噪比优势。然而,在复杂的场景中,在伪装和隐蔽的情况下,系统的主要增强功能是能够生成 3D 图像。在这里,探测器逐个像素地感知范围以及激光脉冲强度,为每个激光脉冲提供深度背景。 3D 数据能够更有效地从背景杂波中提取物体。距离信息受过度对比度、相干性和闪烁效应的影响较小,因此图像比传统的 2D BIL 图像更清晰。在机载应用中,拥有 3D 信息尤其有用,可以在动态环境中提供距离选通的灵活反馈控制。本报告介绍了一些可用于生成 3D 信息的探测器技术以及导致选择 SELEX 探测器的论据
图 2. DNMT3A 编辑细胞中的基因表达动态表明了一种不同于二进制的记忆形式。A 使用与 dCas9、PhlF 或 rTetR 融合的 KRAB、DNMT3A 或 TET1 作为 DNA 结合域 (DBD) 进行瞬时表观遗传编辑的概述。B 本研究开发的实验系统示意图。报告基因通过位点特异性染色体整合整合到内源性哺乳动物基因座中。哺乳动物组成型启动子 (EF1a) 驱动荧光蛋白 EBFP2 的表达。上游结合位点能够靶向募集表观遗传效应物,这些效应物与 DNA 结合蛋白 rTetR、PhlF 或 dCas9 融合。报告基因两侧是染色质绝缘体,以与其他基因隔离。 C 实验概述描述了瞬时转染到带有报告基因的细胞、基于转染水平的荧光激活细胞分选和时间过程流式细胞术测量。D 根据图 C 中显示的实验时间线,DNMT3A 编辑(DNMT3A-dCas9)报告基因的基因表达动态。显示的是 DNMT3A 编辑细胞的单细胞流式细胞术测量(EBFP2)。DNMT3A-dCas9 靶向启动子上游的 5 个靶位点,并使用乱序 gRNA 靶序列作为对照(图 SE.2 A、B、表 S3)。黄色阴影表示检测到转染标记的时间。显示的数据来自 3 个独立重复的代表性重复。E 转染 DNMT3A-dCas9 和细胞分选后 14 天进行 MeDIP-qPCR 和 ChIP-qPCR 分析,以获得高水平的转染。分析了启动子区域(表 S4 和方法)。显示的数据来自三个独立的重复。报告的是使用标准 ∆∆ C t 方法相对于活性状态的倍数变化及其平均值。误差线是平均值的标准差。DNMT3A-dCas9 靶向启动子 (gRNA) 上游的 5 个靶位点。使用乱序的 gRNA 靶序列 (gRNA NT) 作为对照。* P <0.05,** P <0.01,*** P <0.001,非配对双尾 t 检验。F 根据图 C 中显示的实验时间线的 KRAB 编辑 (PhlF-KRAB) 基因表达动态。显示的是单个细胞的报告基因 (EBFP2) 的流式细胞术测量值。黄色阴影区域表示在未应用 DAPG 期间检测到转染标记的时间。从第 6 天开始,在 PhlF-KRAB 和 PhlF 条件下应用 DAPG。每天测量不同的独立重复。显示的数据来自 3 个独立重复。G 转染 PhlF-KRAB 和高水平转染细胞分选后 6 天的 MeDIP-qPCR 和 ChIP-qPCR 分析。分析的是启动子区域。数据来自三个独立重复。显示的是相对于活性状态的标准 ∆∆ C t 方法确定的倍数变化及其平均值。误差线是平均值的标准差。* P <0.05,** P <0.01,*** P <0.001,非配对双尾 t 检验。H 当 KRAB = 0、TET1 = 0 时获得的染色质修饰回路。参见 SI 图 SM.1 C。I 上图:(CpGme, X) 对的剂量反应曲线。下图:DNMT3A 脉冲强度与 DNA 甲基化等级 (CpGme) 之间的剂量反应曲线。脉冲强度通过增加其高度来增加。参见 SI 图 SM.1 D 和 SM.3。J 系统基因表达的平稳概率分布,由 SI 表 SM.1 和 SM.4 中列出的反应表示,参数值在 SI 第 S.9.3 节中给出。K 系统在 t = 28 天后的基因表达概率分布,如图 J 所示,参数值和初始条件在 SI 第 S.9.4 节中给出。参见 SI 图 SM.1 B 和 SM.2。在图 I 和 J 中,DNMT3A 动力学被建模为随时间呈指数下降的脉冲(参见第 S.1.1 节 - SI 方程 (SM.7))。在我们的模型中,ε (ζ) 是衡量基础(招募)擦除率与每次修饰的自催化率之间比率的参数。参见 SI 图 SM.1 E 和 SM.3。
在弯曲的时空中,量子闪光导致颗粒的自发发射。著名的是,如果弯曲的时空包含事件范围,则可以通过鹰效应[1,2]来散发成对的颗粒。但是,(静态)黑洞事件范围并不是导致粒子发射的唯一“时空曲率状态”。模拟空间是有效的波介质,可以在可配置的弯曲空间上进行桌面实验[3]。除了静态黑洞[4-10]外,还可以创建例如(静态)白洞事件范围[4,6,8,11 - 15],旋转几何形状类似于Kerr黑洞[16,17],扩展了宇宙[18-20]或什至(静态)两个马相互作用[21,22]。对于具有静态视野的这些系统,地平线上的波浪的经典频率转移一直是传统的基准来证明模拟重力物理学,尽管也观察到了无法与地平线相关的波浪的散射[6,11,11,13,23,24]。相关的颗粒对粒子的相关对被认为是量子鹰效应的明确标志[26,27],因此已经对流体系统进行了广泛的研究,其中已经研究了它们在各种色散方面的纠缠[28-37]。然而,这些研究并未对比地平线和无水平的自发发射,并且在其他模拟系统和许多模式中都没有做到这一点。ergo,时空曲率对重力类似物中量子发射的影响的问题出现了:是什么区别于地平线的发射(鹰效应)与地平线发射?在这封信中,我们使用分散模拟光学系统[4,6,8,12,38 - 40]证明了不同“时空曲率状态”之间的过渡。由于分散,每种频率模式在带有或不带有ho子的时空时都会经历不同的运动学。为了进一步查明物质,我们使用了一个系统,其中粒子是从一个点发出的:大约阶梯形的光学脉冲通过分散介质移动,我们在1D中考虑。脉冲强度通过光学KERR效应增加了介质的折射率N,从而产生了移动的折射率前部(RIF)。台阶下的光被增加的索引减慢,即,某些频率的光将在脉搏速度以下放慢速度并捕获到RIF中。这类似于黑洞事件范围内波的运动学[3,41,42]。在其他频率下,光线遵循不同的运动学场景(即,波浪的轨迹)。因此,这种简单的光学系统使我们能够在这些不同情况下对比量子发射。此外,存在散射的分析解决方案。我们介绍了RIF模式的所有可能的运动场景,从而解释了阶跃高度(索引变化中的幅度)和系统分布之间的相互作用如何产生时空曲率的不同状态。此外,我们使用对数负性量化了模式的两部分纠缠,这是单调的纠缠。然后,我们使用[43,44]中开发的一种分析方法来描述模式在RIF处的散射,并计算到时空曲率的每个策略中的自发发射。关键模式的纠缠光谱表示多模纠缠,这高度依赖于运动学方案。因此,我们完成了所有模式对之间在时空曲率的所有模式对之间计算的纠缠程度。