将激光二极管连接到驱动器时,将串联电感降至最低将使脉冲的上升时间保持在最低水平,从而实现最短的脉冲。这意味着引线应尽可能短,激光二极管应尽可能靠近驱动器安装。如果无法将激光二极管直接连接到驱动器,则需要使用低电感传输线。传输线电感的典型值约为每英寸 20 nH。这意味着在 10 ns 内切换 40 A 的电流(di/dt 为 40 A/10 ns)将导致 80 V 的瞬态电压。较长的传输线会导致更高的感应瞬态电压,从而导致脉冲上升时间显著增加并限制性能。[2] 很好地概述了电气连接如何影响脉冲性能。
将激光二极管连接到驱动器时,将串联电感降至最低将使脉冲的上升时间保持在最低水平,从而实现最短的脉冲。这意味着引线应尽可能短,激光二极管应尽可能靠近驱动器安装。如果无法将激光二极管直接连接到驱动器,则需要使用低电感传输线。传输线电感的典型值约为每英寸 20 nH。这意味着在 10 ns 内切换 40 A 的电流(di/dt 为 40 A/10 ns)将导致 80 V 的瞬态电压。较长的传输线会导致更高的感应瞬态电压,从而导致脉冲上升时间显著增加并限制性能。[2] 很好地概述了电气连接如何影响脉冲性能。
光学主动电信发射器的最新演示表明,硅是固态量子光子平台的引人注目的候选者。尤其是,在常规的热退火后,已在富含碳的硅中显示了称为G中心的缺陷的制造。然而,这些发射器在晶圆尺度上的高收益受控制造仍然需要鉴定合适的热力学途径,从而在离子植入后激活其激活。在这里,我们证明了纳秒脉冲激光退火时高纯硅底物中G中心的激活。该提出的方法通过供应短的非平稳脉冲来实现G中心的非侵入性,局部激活,从而克服了与发射器的结构性亚元能力相关的常规快速热退火的局限性。有限元的分析突出了该技术的强大非平稳性,提供了与常规更长的热处理相对于常规的较长热处理的根本不同的缺陷工程能力,为嵌入在集成光子电路和波导的集成光子电路和波导中的发射器的直接和受控制造铺平了道路。
稀土发射器已在集成的光学源中研究了一段时间,作为激光源[1]和带有眼镜[2,3]或聚合物[4]的波导放大器。最近,它们被整合到互补的金属氧化物半导体(CMOS)驱动或兼容的SI光子芯片中,作为激光源[5],放大器[6,7]以及调节剂[8,9]。稀土发射器为开发新的主动光学功能的可能性提供了许多可能性,该功能最初集中于第四组[10]或III-V材料[11,12]。然而,需要在硅平台上的有效掺入(例如粘结[13],掩盖沉积[5,14],额外的层[15]或蚀刻[16,17],需要复杂的处理,这对实际应用可能是昂贵且有害的。尤其是Y 2 O 3和Al 2 O 3矩阵的情况,它需要电感耦合等离子体优化的蚀刻[18-20]。在这项工作中,我们提出了稀土掺杂层微发射体的创新设计,而无需使用升降加工与脉冲激光沉积(PLD)结合使用。在通过掩模(例如g。photoresist)的升降过程中,通过蚀刻的经典结构进行了蚀刻的经典结构,但在升降过程中,将材料与沉积的材料一起清除。这种方法比蚀刻更容易,避免沿蚀刻的侧壁潜在损害。尽管非常有吸引力,但提升过程的主要缺点之一是沉积过程中的底物温度。pld允许克服这种限制。升降处理是薄层图案(例如金属)或较厚层的微电子中常规的,具有低温沉积(如溅射)[21],原子层[22]或玻璃沉积[23]。的确,如果底物温度高于200°C(即光固定剂的硬烘烤温度),则提升处理不能成功。PLD是一种通常用于
摘要:热管理是最苛刻的检测器技术和微电子学的未来的主要挑战之一。微流体冷却已被提议作为现代高功率微电子中热量耗散问题的完全集成解决方案。基于硅的微流体设备的传统制造涉及用于表面图案的先进的,基于面膜的光刻技术。此类设施的有限可用性阻止了广泛的开发和使用。我们演示了无掩模激光写作的相关性,以有利地替换光刻步骤并提供更原型的过程流。我们使用脉冲持续时间为50 ps的20 W红外激光器雕刻并钻出525 µm厚的硅晶片。阳极键与SIO 2晶片用于封装图案表面。机械夹紧入口/出口连接器完成了完全操作的微动设备。该设备的功能已通过热流体测量验证。我们的方法构成了一个模块化的微观分化解决方案,该解决方案应促进针对共同设计的电子和微流体的新概念的原型研究。
©作者2024。开放访问。本文根据创意共享归因许可4.0(CC By 4.0)获得许可。,只要您对原始作者和来源提供适当的信用,允许以任何媒介或格式使用,共享,适应,分发和复制,并提供了与Creative Commons许可证的链接,并指出是否进行了更改。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
电力电子转化和存储系统主席,电力电子和电气驱动器研究所(ISEA),RWTH Aachen University,Rwth Aachen University,Campus-Boulevard 89,52074 Aachen,Germany B Demany b,B B衰老中心,可靠性,可靠性和终身预测,用于电化学和电力系统(CARL),RWTH ACHEN,RWTH ACHEN,RWTH ACHEN,RWTH ACHEN,RWTH ACHEN,RWTH ACHEN,RWTH ACHEN 720德国电池技术中心,电气工程研究所,Karlsruhe技术研究所(KIT),Hermann-Von-Helmholtz-Platz-1,76344 Eggenstein-Leopoldshafen,德国德国Delmhony d Helmholtz D Helmholtz IntstituteMünster:sostitute sostute stoctute in Comport of Compotical in Compory(Hi MS)德国E发电与存储系统研究所(PGS),E.ON能源研究中心(E.On ERC),RWTH亚历山大学,Mathieustrasse 10,52074 Aachen,德国Aachen,德国F尤里希·亚奇研究联盟,贾拉能源
本文探讨了脉冲激光沉积 (PLD) 透明导电氧化物 (TCO) 在高质量超薄多晶硅基钝化接触上的适用性。通过减小多晶硅层厚度,可以最大限度地减少多晶硅层引起的寄生吸收。然而,多晶硅触点上的 TCO 沉积(通常通过溅射)会导致严重的沉积损伤,并进一步加剧较薄多晶硅层(<20 纳米)的表面钝化。虽然可以使用高温(约 350 摄氏度)热处理来部分修复表面钝化质量,但由于在多晶硅/ITO 界面形成了寄生氧化层,接触电阻率严重增加。或者,我们表明 PLD TCO 可用于减轻超薄(约 10 纳米)多晶硅层的损伤。通过增加沉积压力可以进一步改善多晶硅触点钝化,同时通过在高质量超薄多晶硅(n+)触点上使用 PLD 掺杂铟的氧化锡 (ITO) 层可实现低触点电阻率(约 45 m Ω cm 2)和良好的热稳定性(高达 350 °C)。通过将 PLD ITO 膜的出色光电特性与 10 nm 薄多晶硅触点相结合,可以实现高度透明的正面触点。
光动力疗法(PDT)依赖于一系列导致细胞死亡的光学和光化学反应。虽然对各种癌症有效,但由于黑色素的高光吸收,PDT在治疗色素黑色素瘤方面的成功率较低。在这里,使用〜100 fs脉冲的近近红外激光光对光子坐骨的2-光子激发(2p -pdt)来解决此限制。使用色素和非有色的鼠类黑色素瘤克隆细胞系在体外阐明黑色素在启用而不是阻碍2p -PDT中的关键作用。比较了临床光敏剂(visudyne)和卟啉二聚体(Oxdime)之间的光循环毒素 - 比较600-倍倍高于σ2p值。出乎意料的是,尽管两种细胞系中的1p -PDT响应都是相似的,但2p激活在杀死色素方面比非色素细胞更有效,这表明黑色素2p -pdt具有主要的作用。在体内的结膜黑色素瘤模型中证明了临床翻译的潜力,在该模型中完全消除了小肿瘤。the工作阐明了在多 - 光子PDT中的黑色素贡献,从而使基于光的治疗方法可以提高,这些治疗以前认为在色素的肿瘤中不适合使用。
通过2D材料的远程外观远处为研究和应用打开了新的机会,克服了经典外观的某些局限性,并允许创建独立层。然而,将石墨烯作为金属氧化物远程外观的2D中间剂具有挑战性,尤其是当通过脉冲激光沉积(PLD)进行时。石墨烯层可以很容易地在通常施加的高氧气压力下氧化,并且血浆羽流的高度动力学颗粒的影响会导致严重的损害。在这项研究中,解决了这两个方面:氩气被作为惰性背景气体引入,以避免氧化并减少血浆物种对石墨烯的动力学影响。激光斑点尺寸被最小化以控制等离子体的羽流和颗粒通量。作为模型系统,钛酸锶(Sto)是在石墨烯缓冲的STO单晶上生长的准同性恋。拉曼光谱法以评估石墨烯层的2 d,g和d带指纹,并评估沉积后层中层的缺陷结构。我们的结果证明,通过降低激光斑点大小和使用高氩增压提供了对生长动力学的控制,这提供了一种关键策略,以保存PLD期间缺陷密度低的石墨烯,同时允许结构相干氧化物层的一层生长。该策略可能会概括为许多复杂氧化物的PLD远程外延,为使用广泛可访问的PLD工艺将2D材料与复杂氧化物集成开辟了道路。