简介:俯仰是一种全身运动,涉及人体段的顺序旋转,导致释放时的球速度接近最大(Pappas等,1985)。人体与地面之间的相互作用对于俯仰生物力学至关重要(MacWilliams等,1998)。我们在这项研究中的目的是确定每条腿在释放球前产生线性和角度脉冲中的作用。每条腿在棒球投球中的作用已经长期存在。Elliot等。 (1988)建议,后腿向前驱动身体,而前腿为骨盆和躯干提供了稳定的底座。 MacWilliams等。 (1998)发现,前腿是将“向前和垂直动量转变为旋转组件”的“锚”。 使用能量流分析,Howenstein等。 (2020)建议,后腿推进动力学有助于传递线性力量,而前腿制动动力学会产生旋转力。 尽管峰值地面反作用力(GRF)值与俯仰速度有关(Elliot等,1988; McNally等人,2015年,Macwilliams等,1998),仅在grf方面提供了有限的地面相互作用的视图,并且在球场上如何调节身体的线性和角度和角度的角度(McNelly and McNally and and and and and and and and and and and。 虽然在俯仰期间观察到骨盆和躯干的片段旋转,但后腿和前腿在俯仰上在俯仰期间产生COM的角脉冲的相对贡献在很大程度上是未知的。 (2018)。Elliot等。(1988)建议,后腿向前驱动身体,而前腿为骨盆和躯干提供了稳定的底座。MacWilliams等。(1998)发现,前腿是将“向前和垂直动量转变为旋转组件”的“锚”。使用能量流分析,Howenstein等。(2020)建议,后腿推进动力学有助于传递线性力量,而前腿制动动力学会产生旋转力。尽管峰值地面反作用力(GRF)值与俯仰速度有关(Elliot等,1988; McNally等人,2015年,Macwilliams等,1998),仅在grf方面提供了有限的地面相互作用的视图,并且在球场上如何调节身体的线性和角度和角度的角度(McNelly and McNally and and and and and and and and and and and。虽然在俯仰期间观察到骨盆和躯干的片段旋转,但后腿和前腿在俯仰上在俯仰期间产生COM的角脉冲的相对贡献在很大程度上是未知的。(2018)。Yanai等人已经计算出身体围绕垂直轴的角度动量。但是,对沥青生物力学的影响需要进一步的解释。了解每条腿如何有助于净线性冲动和净角度冲动,预计将提供有意义的见解个人在球场期间用来调节线性和角度动量的策略。我们假设后腿负责从土丘到本垒板产生前向线性冲动,并且前腿负责产生向后线性冲动,净线性脉冲产生了身体水平动量向本垒板的增加。相反,我们假设前腿产生的GRF会导致对通过COM从Mound到第一垒的水平轴更大的角度冲动,而不是后腿。
a Movement Disorder and Neuromodulation Unit, Department of Neurology, Charit e - Universit € atsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany b MRC Brain Network Dynamics Unit, Nuf fi eld Department of Clinical Neurosciences, University of Oxford, United Kingdom c Department of Neurosurgery, Medizinische Hochschule Hannover, Hannover, Germany d Department of神经病学,莱顿大学医学中心,荷兰E系,荷兰神经病系,哈加教学医院,海牙,荷兰,荷兰神经病学系,查尔斯大学,医学院第一学院,普拉格大学医院,布拉格,布拉格,捷克大学神经病学系,伯恩大学医院,伯恩伯尔尼大学,伯尔尼大学,伯恩伯尔尼大学,伯尔尼大学医院瑞士伯尔尼伯尔尼i神经病学系,维尔茨堡大学医院和朱利叶斯·马克西米利安大学,乌尔兹堡大学,德国乌尔兹堡,德国尤尔兹堡,J J.马萨诸塞州综合医院神经外科和美国马萨诸塞州波士顿的哈佛医学院
操纵光的多元特性的能力可以使光 - 物质的相互作用和轻度驱动式相互作用。在这里,使用量子控制,我们引入了一种方法,该方法能够以全面的方式操纵生成的光场的振幅,符号甚至配置。按照这种方法,我们证明了“飞翔的甜甜圈” Terahertz(THZ)脉冲的产生。我们表明,从动态环电流辐射出的单个循环THZ脉冲具有方位角极化的电场结构,并且空间和时间分辨的磁场具有强,孤立的纵向分量。我们将飞行甜甜圈脉冲应用于环境空气中水蒸气的光谱测量。脉冲将作为光谱,成像,电信和磁性材料的独特探针。
摘要通过极端超紫罗兰(XUV)attosecond激光脉冲对原子或分子的光电离,需要仔细考虑来自光电离过程导致的离子 +光电子纠缠程度。在这里,我们考虑通过the骨的attosent激光脉冲对中性H 2的光电离心引起的相干H 2 +振动动力学。我们表明,chi脚的激光脉冲导致离子 +光电子纠缠以及从纯状态到混合状态的过渡。这种过渡的特征是评估纯度,对于转换限制的attosent激光脉冲而言,它接近统一性,并降低到由在光电离过程中填充的振动态数确定的值,以增加chirp参数的值。在计算中,通过用短的超紫色(UV)激光脉冲计算H 2 +阳离子的时间延迟解离来探测振动动力学。独立于chirp的大小,可以通过记录XUV-UV延迟依赖性动能与随附的光电子的动能,从而恢复相干的振动动力学。
Terahertz(THz)辐射覆盖了约0.1至30 THz的范围。它在基础研究和未来应用中拥有巨大的希望,1,2,因为THZ频率范围与物质的所有阶段,即等离子体,气体,液体和固体相吻合。3,例如,THZ辐射可以共同引起传导 - 电子传输,等离子体,激子,库珀对,Phonons或镁元。4因此,THZ光谱是研究广泛材料中基本过程的强大工具。thz辐射不仅是一种探针:高振幅THZ来源的发展可以控制物质5-7的集体激发,例如8-11的磁铁中的磁子或驾驶phonons。目前,THZ电场在台式系统中达到1 mV/cm的峰值强度,并且在大规模用户设施(例如自由电子激光器)中超过10 mV/cm。17在激发脉冲激发时,最近观察到了物质的不同阶段(例如,拓扑,磁性和结构)之间的超快切换。8,18–25 THZ激发也可以与其他良好的实验探针(例如角度分辨光发射光谱,26个扫描隧道显微镜,27-29或X射线衍射)结合使用。30,31将THZ光谱与如此强大的
摘要量子计算机的效用高度取决于可靠执行准确的量子逻辑操作的能力。为了找到最佳的控制解决方案,探索无模型方法的质量不受量子处理器的理论模型的有限准确性的限制,这是特别感兴趣的,与许多既定的门实现策略相反。在这项工作中,我们利用一种连续的控制加强学习算法来设计纠缠两倍的门,用于超导量子。具体而言,我们的代理构建了交叉谐振和CNOT门,而没有任何有关物理系统的任何事先信息。使用固定频率固定耦合式旋转矩的模拟环境,我们证明了产生新型脉冲序列的能力,以胜过标准的交叉谐振门,同时保持了对随机单位噪声的可比敏感性。我们进一步展示了培训和输入信息中的增强,使我们的代理商可以使其脉冲设计能力调整以漂移硬件特性,但很少有几乎没有其他优化。我们的结果清楚地表现出了基于Transmon Gate Design的基于自适应反馈学习的优化方法的优势。
科学技术政策办公室 (OSTP) 是根据 1976 年《国家科学技术政策、组织和优先事项法》成立的,旨在为总统和总统行政办公室内的其他人员提供有关经济、国家安全、国土安全、卫生、外交关系、环境、资源的技术回收和利用等方面的科学、工程和技术方面的建议。OSTP 领导跨部门科学技术政策协调工作,协助管理和预算办公室每年审查和分析联邦预算中的研究和开发,并作为总统在联邦政府主要政策、计划和方案方面的科学技术分析和判断的来源。更多信息请访问 http://www.whitehouse.gov/ostp。
薄玻璃切割中的时间空气脉冲效率 Madalin-Stefan Radu、Cristian Sarpe、Elena Ramela Ciobotea、Bastian Zielinski、Radu Constantinescu、Thomas Baumert 和 Camilo Florian* *通讯作者电子邮件:camilo.florian@uni-kassel.de。这是以下文章的预印本:Radu、Madalin-Stefan、Sarpe、Cristian、Ciobotea、Elena Ramela、Zielinski、Bastian、Constantinescu、Radu、Baumert、Thomas 和 Florian、Camilo。 “时间艾里脉冲在薄玻璃切割中的效率” Zeitschrift für Physikalische Chemie,2024 年。最终认证和印刷版本可在线获取:https://doi.org/10.1515/zpch-2024- 0911 超短脉冲激光源是用于微和纳米加工大带隙介电材料的有用工具。这些脉冲的最大优势之一是能够达到高强度峰值,即使在对激光波长透明的材料中也能促进吸收。此外,如果修改脉冲时间分布,能量吸收可以烧蚀直径小、深度大的孔。在这项工作中,我们提出了初步结果,将三种类型的脉冲作为玻璃切割的前体:带宽受限(785 nm 时为 30 fs)、正色散和负色散时间艾里脉冲 (TAP)。所选材料为厚度为 170 μm 的钠钙玻璃,在不同激光能量和扫描速度下,以 1 kHz 的重复率在紧密(50 倍物镜)和松散(20 倍物镜)聚焦条件下进行刻划。激光加工后,使用自制的四点弯曲台通过机械应力对玻璃进行切割。我们分析了三种激光脉冲在表面和横截面上的刻划线质量以及断裂后所需的断裂力。我们报告称,与其他实施的脉冲相比,正 TAP 在玻璃样品上产生了整齐、平整的切割边缘。关键词:玻璃切割;超短脉冲激光;高纵横比结构;激光加工;时间脉冲整形;薄玻璃
最初,光电子能谱是使用原子灯作为单能 VUV 光子源进行的,但激光的出现大大提高了这种技术的分析能力。具体而言,将激光源聚焦到小点的能力使得能够分析发射电子相对于样品的角轨迹(即参考晶体材料中的晶格矢量)。这通常通过相对于电子能量分析仪逐步旋转样品台来完成。角分辨光电子能谱 (ARPES) 能够详细测量重要信息,例如费米面的形状,它是倒易晶胞矢量 (kx , ky ) 的函数。一些研究人员还采用一种称为莫特偏振仪的设备,主要测量电子的自旋。
在许多领域学习材料的能力至关重要。随着技术的进步,现在可以详细研究原子化。本文在检查不同的反应时研究了两个因素,包括带宽和选择性。具体来说,它探讨了激光脉冲的持续时间如何影响研究过渡时能量和选择性的宽度。这是使用由Morlet小波建模的FEMTO-和ATTSOND脉冲的模拟完成的。然后将这些脉冲转换为傅立叶,以根据海森伯格的不确定性原理来分析该脉冲中所含能量的宽度。费米的黄金法则和电子结合能的表用于定性评估选择性。结果表明,1 FS脉冲对应于FWHM能量中的约1 eV,而A为脉冲对应于FWHM能量中约1000 eV。选择性在多个跃迁耦合时随着带宽的增加而,但是当特定过渡的耦合是dom-Inant时,会改善。 状态的密度也会影响选择性;较高的密度降低了选择性,而较低的密度可以增强它。,但是当特定过渡的耦合是dom-Inant时,会改善。状态的密度也会影响选择性;较高的密度降低了选择性,而较低的密度可以增强它。