摘要 — 当前构建量子计算机的努力主要集中在双态量子比特上,这通常涉及抑制随时可用的更高状态。在这项工作中,我们打破了这种抽象,并为广义 d 状态量子比特上的门合成了短持续时间控制脉冲。我们提出了增量脉冲重新播种,这是一种实用的方案,它通过使用以前的结果迭代播种优化器来引导最优控制软件获得最短持续时间的脉冲。我们通过对 transmons 上的一和两量子比特门进行显式脉冲优化,发现希尔伯特空间维数和门持续时间之间存在近线性关系。我们的结果表明,在实际感兴趣的领域中,量子比特操作比以前预期的要高效得多,并且有可能显着提高当前硬件的计算能力。索引术语 — 量子计算、量子比特、量子最优控制、脉冲合成
发生器规格:•制造商:NCBJ(波兰)•发射器类型:基于磁控管的微波脉冲发生器•生成的频率:2.98 GHz•脉冲功率:3 MW•脉冲持续时间:0.5 – 3 μs•脉冲重复周期:从单个脉冲到 4 ms•上升前斜率时间:0.1-0.2 μs•下降后斜率时间:0.2-0.5 μs•集成:直接波导与定向天线的结合
机载激光扫描 (ALS) 是一种遥感技术,基于测量从飞机发射并被地面物体反射的激光脉冲的飞行时间。过去二十年,全球定位系统、惯性导航和激光技术的进步使其快速发展。最初,飞机或卫星上的 LiDAR(光检测和测距)传感器仅在平台路径上的一维 (1D) 剖面上运行。现在,传感器配备了定位装置,能够扫描平台轨迹上的大片区域。到 20 世纪 90 年代末,小型商用传感器的脉冲重复频率约为 10 kHz [1],服务提供商才刚刚兴起。现在,领先的传感器利用多脉冲技术实现了 300 kHz 的脉冲重复频率。一些国家已经实现了完整的 LiDAR 覆盖(瑞士、丹麦),而另一些国家(芬兰、瑞典)正在进行全面测绘。
摘要 - 符号范围是指具有可靠性的两个设备之间的实际物理距离的能力。这在各种应用中至关重要,包括解锁物理系统。在这项工作中,我们将在IEEE 802.15.4Z中指定的Ultra-Wideband Impuls Radio(UWB-ir)的上下文中查看安全范围(a.k.a.4z)。特别是加密波形,即炒时间戳序列(STS)以高速脉冲重复频率(HRP)在4z中的高速脉冲重复频率(HRP)定义,以用于安全范围。这项工作显示了使用足够的接收器设计实现4z HRP的安全性分析,并显示STS波形可以实现安全的范围。我们首先审查先前研究中通过的STS接收器并分析其安全漏洞。然后,我们提出一个参考STS接收器,并证明可以通过在4z HRP中使用STS波形来实现安全范围。也表征了参考安全性STS接收器的性能界限。数值实验证实了分析并证明了参考STS接收器的安全性。
根据杂波情况和电子对抗 (ECM) 威胁,雷达在 32 脉冲突发和脉冲多普勒信号处理、4 脉冲突发和移动目标指示处理或脉冲到脉冲捷变之间选择其频率捷变模式。脉冲重复频率和脉冲宽度的选择取决于目标的接近程度。数字接收器与改进的信号处理相结合,使脉冲长度和波形具有更高的灵活性,例如,用于适应新的威胁。
必须使用推理引擎来组合各种证据(即来自多个组网传感器的信息)并产生目标分类和 ID。图 4 包含了我们基本问题的简单图像。例如,ESM 检测机载平台上有源雷达的辐射。它分析检测到的辐射的属性,即频率、脉冲宽度、脉冲重复间隔等;将这些属性与其库中的属性进行比较;并输出检测到的证据的解释列表。解释列表采用可能的发射器列表的形式,以及可能产生物理证据的相对概率。类似地,对于任何其他组网传感器(例如,NCTR 传感器,如电光成像系统或高分辨率雷达),推理引擎将组合物理证据的所有解释以提供平台分类和 ID。
摘要:NASA 戈达德太空飞行中心 (GSFC) 的 W 波段 (94 GHz) 云雷达系统 (CRS) 已全面更新为现代固态和数字技术。该 W 波段 (94 GHz) 雷达在 NASA ER-2 高空飞机上以天底指向模式飞行,提供云和降水的极化反射率和多普勒测量。本文介绍了升级后的 CRS 的设计和信号处理。它包括硬件升级 [固态功率放大器 (SSPA) 发射器、天线和数字接收器] 的详细信息,包括新的反射阵列天线和固态发射器。它还包括算法,包括内部环回校准、使用体积反射率和海洋距离积分反向散射之间的直接关系的外部校准,以及改进的交错脉冲重复频率 (PRF) 多普勒算法,该算法对展开误差具有很强的抵抗力。提供了通过最近的 NASA 机载科学任务升级的 CRS 获取的数据样本。
操作要求 海况三 系统重量 ≤2200 磅 船舶平台 SL‐120(飓风级船舶) 环境 MIL STD‐810G(湿度、绿水、盐雾) 射频发射器 发射器 磁控管发射器 压水器至天线 4‐10MW 发射器调谐频段 2600‐3950MHz 调制 脉冲天线 天线频率范围 2600‐3950MHz 天线极化 水平 水平增益 30‐33dBi 天线重量 ≤400 磅 AZ/EL 铰接 机械或电动(范围待定) 调制器驱动 4‐10MW 脉冲宽度 可变,远程可编程 脉冲重复频率 可变,远程可编程 电压 可变,远程可编程 电弧检测 是 电压和电流监控 是 热管理解决方案 是 子组件 调制器组件,高压 电源输入440V/60Hz/3 相
波长 1030nm* 脉冲持续时间 900±100fs 额定功率范围 0-50W 0-120W 脉冲重复频率 单次 – 40MHz 最大额定脉冲能量 100μJ 120μJ 快速突发模式下的脉冲周期 25ns 每个突发的可用脉冲数 2-10** 最大突发能量 250μJ 600μJ 功率稳定性 1%rms 光束直径 3.0±0.25mm -1/e 2 在激光输出孔径处 光束质量因数 M 2 < 1.3 发散度(全角,远场)< 600μrad 指向稳定性 < ± 50μrad 偏振 线性(垂直于底座),纯度>100:1 电源要求 230V±10%,单相50/60Hz 1.2kW 最大输入功率 2.3kW 重量 110kg(激光器头)35kg(DC PSU,控制器DC PSU)***
目前,雷达传感器面临的最大威胁是低速、低速、雷达截面较小的无人机(“低、慢、小 - LSS”)。这些无人机往往在存在地面杂波和降水杂波的区域运行。高速飞行的飞机和导弹在多普勒空间中与这种杂波很好地分离,但速度慢、雷达截面小的无人机很难在杂波中被发现和识别。需要多普勒滤波来抑制地面杂波并实现无人机检测。由于无人机速度相对较慢,并且在存在杂波的地方运行,因此过滤地面杂波和雨水变得更加困难。需要非常精细的多普勒分辨率才能将速度非常慢的无人机与杂波分离,以便检测到它们,这需要相对较高的脉冲重复频率 (PRF) 和相干处理间隔 (CPI) 内的大量脉冲的组合。这很难通过中长距离雷达实现。这些是管理近距防空雷达所用雷达的时间能量预算的关键因素。无人机(尤其是旋翼无人机)的特性会影响检测,例如,旋翼会产生与身体回波完全分离的多普勒边带,即使无人机悬停或与雷达相切飞行,这些边带也可用于检测目标而不是身体回波。