圣约瑟夫技术研究所,钦奈摘要:虚拟脑模型是有趣的研究作品之一。在本文中,我们开发了一个模型,以确保使用物联网的电子遗嘱安全性,并使用汗水传感器监测患者的健康。使用EEG电极监测患者的大脑活动,并在IoT模块的帮助下将收集的数据存储在云平台中。在公证人的存在下,电子意愿将在云平台上上传。因此,将准确监测患者的大脑活动,一旦电极感觉到没有大脑活动,就会等待某个时间延迟,并确认没有大脑活动。因此,确认后,电子意志将通过邮件或消息发送给授权人员。在汗水传感器的帮助下监测患者的健康。当卧床不起的患者有任何与心脏有关的异常时,该人最初开始出汗时,如果发现任何异常发现信息是通过GSM模块立即将信息发送给医生的,则可以监测此温度和脉搏率的指示。这可以确保可以在不延迟的情况下保存患者的生命,并可以保存患者的寿命。关键字:大脑计算机接口;大脑活动;物联网,电子遗嘱,汗水传感器,GSM模块。
背景:创伤是全球第三大死亡原因,也是 44 岁以下人群的首要死亡原因。对于创伤患者,尤其是当天早些时候受伤的患者,动脉血气 (ABG) 被视为黄金标准,因为它可以为医生提供重要信息,例如检测内伤程度,尤其是肺部损伤程度。但是,通过实验室方法测量这些气体是一项耗时的任务,而且很难对患者进行采样。测量这些气体所需的设备也很昂贵,这就是为什么大多数医院没有这种设备的原因。因此,无需临床试验即可估算这些气体可以挽救创伤患者的生命并加速他们的康复。方法:在本研究中,通过收集有关 2280 名创伤患者的信息,提出了一种基于人工神经网络的动脉血气估计和预测方法。在所提出的方法中,通过训练前馈反向传播神经网络(FBPNN),神经网络只能根据患者的初始信息预测这些气体的量。所提出的方法已经在MATLAB软件中实现,并且收集的数据测试了其准确性,并给出了其结果。结果:结果显示预测动脉血气的准确率为87.92%。预测的动脉血气包括PH,PCO2和HCO3,其准确率分别为99.06%,80.27%和84.43%。因此,所提出的方法在预测动脉血气方面具有相对较好的准确性。结论:鉴于这是第一项使用初始患者信息(收缩压 (SBP)、舒张压 (DBP)、脉搏率 (PR)、呼吸频率 (RR) 和年龄)预测动脉血气的研究,并且基于结果,所提出的方法可以成为协助医院和实验室专家的有用工具。关键词:动脉血气、创伤、神经网络、预测。
摘要 引言 新冠肺炎 (COVID-19) 在全球爆发。由于尚无有效的治疗方法或疫苗,严格实施隔离和检疫等传统公共卫生措施仍是控制疫情的最有效工具。当隔离一名无症状的新冠肺炎接触者时,有必要进行体温和症状监测。由于这种监测具有间歇性且高度依赖自律,因此效果有限。生物传感器技术的进步使得使用各种外形的可穿戴生物传感器持续监测生理参数成为可能。 目的 探索使用可穿戴生物传感器持续监测多维生理参数以尽早发现新冠肺炎临床进展的潜力。 方法 这项随机对照开放标签试验将涉及 200-1000 名在香港指定设施内接受强制隔离的与新冠肺炎有密切接触的无症状受试者。在 14 天的隔离期间,受试者将按 1:1 的比例随机接受远程监控策略(干预组)或标准策略(对照组)。除了对照组的发烧和症状监测外,干预组的受试者还将在手臂上佩戴可穿戴生物传感器,以持续监测皮肤温度、呼吸频率、血压、脉搏率、血氧饱和度和日常活动。这些生理参数将实时传输到名为 Biovitals Sentinel 的智能手机应用程序中。然后,这些数据将使用名为 Biovitals 的基于云的多变量生理分析引擎进行处理,以检测细微的生理变化。结果将显示在基于网络的仪表板上,供临床医生审查。主要结果是 COVID-19 的诊断时间。伦理与传播 研究地点的机构审查委员会已获得伦理批准。结果将发表在同行评审期刊上。
远程患者监测:专门的团队,以衡量我们的高风险人群来衡量远程设备,以衡量和趋势脉搏率,呼吸率,SPO2,腋窝温度,体重,血压和患者活动性。护理操作:提供的教育和援助,以帮助管理医疗和行为健康需求。会员门户:访问您的福利,身份证,索赔,健康工具和其他资源。远程医疗:在需要时通过视频或电话来照顾。从一开始:护士和社区卫生工作者团队帮助您照顾您和宝宝的怀孕。健康的儿童计划:动手,有趣,互动程序,在现场和实际上提供。其他成人视力益处:成员21及以上的成员可以获得处方眼镜或隐形眼镜。Tel-a-nurse:每周7天每天24小时与护士谈论紧急健康问题。紧急护理福利:当您使用参与设施时,紧急护理中心将无需支付任何费用。健康计划和数字工具:通过我们的有趣活动,放映和强大的工具来建立健康的习惯。包括移动响应式在线参与者门户网站。生活方式管理:健康指导,以帮助养成健康的习惯并在个人健康之旅中为您提供支持。烟草戒烟:支持您退出烟草。食物是健康:帮助进行快照,移动分销,新鲜食品农业地点,数字内容以及当地食品访问和推荐的服务。GED计划:涵盖培训材料,实践测试,GED测试和重新测试的成本。社会需求编程:提供以满足社会需求的编程;邻居中发现的详细信息和推荐。邻居:在您的社区中找到免费或减少成本的服务,网址为www.neighborlypa.com或移动应用程序。运输支持:非紧急运输到非医疗任命。
摘要引入夜间高血压对于2型糖尿病患者(T2D)在临床上很重要,因为它与心血管事件有很强的相关性。我们旨在检验以下假设:钠 - 葡萄糖共转运蛋白2抑制剂Luseogliflozin,比二肽基肽酶(DPP)-4抑制剂在T2D患者中更有效地改善夜间高血压。方法和分析本研究是一项多中心,前瞻性,随机,开放标签,盲目端点并行组试验。六十名患有T2D和高血压的参与者已接受DPP-4抑制剂治疗超过4周,并且具有6.0%–9.0%的血红蛋白A1C(HBA1C)水平为6.0%–9.0%,将根据年龄,体重指数(BMI)和HBA1C的年龄为单位,将其dpp-4 mig for luse complo luse complo luse to luse to luse to luse in nigitor as in nigitor a in andim ins nigition。几周。24小时的门诊血压监测(ABPM)将在基线和研究结束时进行两次。所有参与者将继续他们的饮食和运动疗法,在研究期间不会调整伴随药物的剂量。主要终点是Luseogliflozin对ABPM测量的夜晚收缩压(SBP)平均变化的影响。次要终点是夜晚的舒张压(DBP)的平均变化,SBP和DBP的24小时,白天SBP和DBP,脉搏率,BP M值,下一个剂量前1小时,下一个剂量之前1小时以及其他实验室参数。计算样本量的两侧测试,以90%的功率检测处理之间的差异。道德和传播北海道大学医院伦理审查委员会已批准该协议。结果将在同行评审的期刊和科学会议上传播。试验注册号大学医院医疗信息网络(UMIN000031451);日本临床试验登记处(JRCTS011180019);预兆。
所有介电材料都具有电活性,即能够在施加的电场作用下改变其尺寸或形状。(Dang et al, 2012) 电活性聚合物 (EAP) 及其聚合物纳米复合材料由于其低模量、高应变能力、易于低成本加工和可定制的机电耦合特性,特别适用于从致动器、传感器到发电机等应用。通常,EAP 诱导的应变能力比刚性和易碎的电活性陶瓷高两个数量级。与形状记忆合金和聚合物相比,它们显示出更快的响应速度。(Yuan et al, 2019) 由于这些特性,EAP 可以与生物肌肉相媲美,并长期被称为“人造肌肉”。(Bar-Cohen, 2002) 社区甚至发布了一项挑战,要求开发一种由人造肌肉驱动的机械臂,以赢得与人类对手的腕力比赛。除了致动器之外,EAP 还显示出其在传感应用中的潜力,例如触觉传感、血压和脉搏率监测以及化学传感。(Wang 等人,2016 年)此外,EAP 甚至可以作为发电机中的关键活性材料。随着便携式电子设备(例如无线传感器和发射器)和无线微系统的功能不断增加,其能量需求也急剧增加。而电池的使用由于环境问题和有限的使用寿命而很麻烦,因此需要定期更换。解决这一挑战的明显解决方案是开发完全依赖从人体或周围环境中获取的能量的自供电系统。EAP 已被证明能够获取振动机械能(Lallart 等人,2012 年)和海浪能(Jean 等人,2012 年)。EAP 可以根据其所属的晶体类别(即中心对称或非中心对称)分为不同的亚组。当具有对称中心的介电材料受到电场刺激时,对称性将抵消阳离子和阴离子的运动,不会导致晶体的净变形。然而,化学键不是谐波的,键的非谐性会引起二阶效应,导致晶格的净变形很小。(Vijaya,2013)发现变形与电场的平方成正比,与电场的方向无关。这种效应称为电致伸缩。由于这种非谐波效应存在于所有介电体中,因此所有介电体都是电致伸缩材料。
有望在个人和专业上改变我们的生活。据估计,到2025年,通过Internet进行通信的IoT设备将超过310亿。是物联网实现的示例。传感器技术是物联网的关键部分,也是有形的实现。这是一个技术领域,正经历着快速增长,被认为是一个数十亿美元的行业。无线传感器网络是分布式系统,其中自动设备或MOTES可以观察到可以收集温度,湿度,运动和声音等数据的复杂环境),甚至是医疗数据(例如心率,血液氧气水平和脉搏率)。数据是通过网络收集的,融合/聚合,路由和运输到控制/分析/和决策应用程序传感器网络是在不同领域的广泛应用程序的推动者本课程旨在向学生介绍物联网系统设计,部署和管理中典型的基本主题和问题。它突出了我们社会中物联网发展的重要性,并研究了典型的物联网设备和网络的重要组成部分,并讨论了当前和未来的物联网趋势。该课程强调了AI在解决物联网网络复杂性,自我意识和大数据处理问题中的作用。传感器网络将被用作物联网中的新兴应用程序。。还引入了IoT网络核心的主题,包括数据融合,同步,云计算,本地化,嵌入式/小型AI和图形信号处理,压缩传感,聚类和IOT分析,分析和IOT分析,区块链及其在IoT中的应用。在本课程中,学生将学习WSN理论和技术,例如路由和安全性,并将在WSN中获得动手技能和实践知识。该课程介绍了在设计和分析Intel-ligent传感器和传感器网络(移动和固定)方面遇到的各种基本概念,并重点介绍了任务关键应用程序。课程将涵盖理论模型和设计原则;并探讨无线传感器网络算法,协议,架构和应用程序中的最新开发和开放研究问题。本课程涵盖的主题包括:传感和传感器网络的简介,传感器网络的属性,通信模型和网络堆栈,信息路由,定位和同步,压缩传感,传感器融合和聚合,图形信号处理,图形处理,安全性,安全性,中间件和BigData环境。
我们要向所有为“人工智能在医学计算机辅助诊断中的进展”特刊做出贡献的作者表示感谢,他们提供了基于人工智能的医学诊断的优秀最新研究成果。此外,还要特别感谢所有帮助我们处理本期特刊文章的审稿人。最后,我们要向日夜工作于本期特刊的编辑成员表示深切而热烈的感谢和敬意,他们提供了最新的基于人工智能的研究成果,丰富了第四次工业革命的人工智能医学知识。医学诊断是通过分析症状、病史和检查结果来评估医疗状况或疾病的过程。医学诊断的目标是确定医疗问题的原因并做出准确的诊断以提供有效的治疗。这可能涉及各种诊断测试,例如影像学检查(例如,X 光、MRI、CT 扫描)、血液检查和活检程序。这些测试的结果可帮助医疗保健提供者确定患者的最佳治疗方案。除了帮助诊断疾病外,医疗诊断还可用于监测疾病进展、评估治疗效果并在潜在健康问题变得严重之前发现它们。随着最近的人工智能革命,医疗诊断可以得到改进,通过提高诊断过程的预测准确性、速度和效率来彻底改变医疗诊断领域。人工智能算法可以分析医学图像(例如,X 光、MRI、超声波、CT 扫描和 DXA),并帮助医疗保健提供者更准确、更快地识别和诊断疾病。AI 可以分析大量患者数据,包括医学 2D/3D 成像、生物信号(例如 ECG、EEG、EMG 和 EHR)、生命体征(例如体温、脉搏率、呼吸频率和血压)、人口统计信息、病史和实验室测试结果。这可以支持决策并提供准确的预测结果。这可以帮助医疗保健提供者就患者护理做出更明智的决定。多模态数据方面患者数据的多样性是一种最佳智能解决方案,可以根据图像、信号、文本表示等方面的多种发现提供更好的诊断决策。此外,人工智能驱动的临床决策支持系统 (CDSS) 可以提供实时帮助和支持,以就患者护理做出更明智的决策。通过整合多种数据源,医疗服务提供者可以更全面地了解患者的健康状况及其症状的根本原因。多种数据源的组合可以更全面地反映患者的健康状况,减少误诊的机会并提高诊断的准确性。多模态数据可以帮助医疗服务提供者监测病情随时间的发展,从而更有效地治疗和管理慢性病。同时,使用多模态医疗数据,基于可解释 XAI 的医疗服务提供者可以更早地发现潜在的健康问题,在它们变得严重并可能危及生命之前 [ 1 ]。XAI 工具可以自动执行常规任务,让医疗服务提供者可以专注于更复杂的患者护理。
背景:单细胞生命中最早,最简单的形式发展了代谢,从而从事生长,修复,繁殖和能量收获的分子业务。作为单细胞生物演变成多细胞生物,他们的身体要求系统在许多与环境直接接触的细胞中移动代谢物。循环系统,即一种水管,演变为将代谢产物移入体内以及身体的所有细胞中。多细胞生物的循环系统变得越来越复杂,向进化的系统发育树移动。海绵(porifera)依靠简单的扩散,而水母(cnidaria)依靠身体抽水进行循环。在某种程度上,扩散和身体泵送不足以通过生物体循环所需的代谢产物。需要一个专用的循环系统才能有效地移动人体的代谢产物。循环系统需要泵来推动整个体内代谢物的液体悬浮液。这个泵称为心脏。最简单的心脏是在鱼(ichthys)中发现的;这心有两个腔室,一个中庭和一个心室。两腔心脏的缺乏是将含氧血液与无氧血液混合在一起。一种更有效和发达的,在爬行动物(乌龟)中发现了三个室的心脏,有两个心房和一个心室。额外的心房有助于防止将含氧血液与无氧血液混合。人心位于胸部内两个肺之间。人类(哺乳动物)四腔心脏,两个心房和两个心室由于从器官内的含氧血液完全分离而非常有效。心脏是一种强大的肌肉器官,可以通过人体的循环系统泵送血液。心脏以节奏为脉搏泵送血液,该脉冲由自主神经系统告知。当飞行或战斗反应发生在我们的大脑中时,例如当我们突然害怕时,我们的心率会迅速增加,我们可以感觉到我们的心脏在胸口内磅。正常的休息时间为每分钟60至100次或BPM。当一个人锻炼(例如跑步)时,自主神经系统会提高心律,而没有人有意识的思想。年轻人的最大心脏约为200;随着个人的年龄,这种最大值会减少。运动员健身的一种度量是他们的心输出量,这是他们可以从肺部循环到肌肉的血液量。心输出量是心脏中风量的心脏脉搏率的产物。普通人的中风量约为70毫升。对有氧训练的一种反应是中风量的扩大和维持快速心率的能力。世界一流的有氧运动员的中风量很大,可以长时间保持快速的心率,从而将大量的氧气输送到其工作肌肉中。当氧气被呼吸到肺部时,氧气会扩散到流经肺内高表面积肺泡床的血红细胞中。心脏和肺的功能是将氧气从环境传输到人体每个细胞内的线粒体,以从消化系统中氧化摄入的糖(葡萄糖),以提供生命所需的能量。含氧血液通过循环系统移动到高表面积毛细管床,氧气扩散到细胞内的线粒体中,参与代谢。血液通过心脏的四个腔室的流动发生在以下步骤中: