I. 引言 在正常运行状态下,两个空中交通管制员组成的二元组负责任何给定空域。 两者都可以访问与任务相关的信息,例如雷达数据、天气报告和航班时刻表。图 1 显示了德国空中交通管制员的工作场所。 在二元组中,空中交通管制员扮演着不同的角色:一个(执行官)负责通过无线电使用口头交通命令与飞行员通信,而另一个(规划员)负责协调来自或向其他扇区的航班的接受或移交。 这是必要的,因为每个扇区都有其各自的飞行高度层运行,并且通常只接受某个飞行高度层阈值内的航班,以保持相邻航班之间的平稳垂直对齐。在安排交接时,规划人员还负责核实高管与飞行员之间的沟通,并在必要时进行干预。因此,职责的划分取决于良好的内部沟通以及透明的工作环境。加快和维持有序的交通流量可以说是空中交通管制员工作的主要目标。然而,出于安全原因,严格遵守分离标准设定了不可协商的规则,这些规则充当了约束 [1,第 341 页]。这两个特点的结合导致了一项艰巨的工作,特别是因为空中交通管制员必须
全球环境中微塑料和纳米塑料 (MNP) 浓度不断上升,引发了人们对人类接触和健康结果的担忧。用于稳健检测组织 MNP 的补充方法,包括热解气相色谱-质谱法、衰减全反射-傅里叶变换红外光谱法和带能量色散光谱的电子显微镜,证实了人类肾脏、肝脏和脑中存在 MNP。这些器官中的 MNP 主要由聚乙烯组成,其他聚合物的浓度较少但很重要。与肝脏或肾脏中的塑料成分相比,脑组织中聚乙烯的比例更高,电子显微镜证实了分离的脑 MNP 的性质,它们主要呈现为纳米级碎片状碎片。这些死亡组织中的塑料浓度不受年龄、性别、种族/民族或死因的影响;死亡时间(2016 年 vs. 2024 年)是一个重要因素,肝脏和脑样本中的 MNP 浓度随时间推移而增加(P = 0.01)。最后,在一组有痴呆症诊断的死者脑中观察到了更大的 MNP 积累,脑血管壁和免疫细胞中明显沉积。这些结果强调,迫切需要更好地了解塑料在人体组织(尤其是脑)中的暴露途径、吸收和清除途径以及潜在的健康后果。
“这反映了聚集空间效应,”纽约大学人文研究学院生命科学临床副教授、纽约大学神经科学中心研究员库库什金说。“这表明,通过间隔重复进行学习的能力并非脑细胞所独有,事实上,这可能是所有细胞的基本属性。”
使用Sigmoid Transformation的间隔。c,将转录组数据分配给丘脑种子。voxelwise估计在丘脑中提取了2,228个具有差异表达的基因的验尸基因表达的估计值。对于每个基因,每个种子点都分配给它所在的体素的表达值,以产生921 by-2228 by-by-gene矩阵。如上所述,每个基因的表达水平根据缩放的乙状结肠标准化为单位间隔。d,关节分解。通过主成分分析(PCA)将逐皮连通性和逐个基因矩阵串联并分解为一组正交因素。从最终的主组件(PC)中,第一台PC(PC1)解释了串联数据矩阵中差异的30.2%。对于每个PC,分数分别描述了丘脑和载荷中每个成分的表示,分别描述了每个皮质区域和基因的连通性强度和基因表达水平的贡献。
近期处理自然语言的人工神经网络在需要句子级别理解的任务中实现了前所未有的表现。因此,它们可能是人类大脑中语言信息整合的有趣模型。我们回顾了将这些人造语言模型与人脑活动进行比较的作品,并评估了这种方法在多大程度上改善了我们对自然语言理解中涉及的神经过程的理解。出现了两个主要结果。首先,单词含义的神经表示与人工神经网络使用的上下文相关的密集词向量一致。第二,在人工神经网络中出现的处理层次结构与大脑大致匹配,但在整个研究中令人惊讶的是不一致。我们讨论建立人工神经网络作为自然语言理解的过程模型时的当前挑战。我们建议在将表示形式映射到大脑数据时利用人工神经网络的高度结构化代表性几何形状。
摘要:在处理智能系统的算法方面时,与生物学大脑的类比一直很有吸引力,并且经常具有双重功能。一方面,它一直是其设计灵感的有效来源,另一方面,它被用作其成功的正当化来源,尤其是在深度学习(DL)模型的情况下。近年来,大脑的灵感失去了对自己的第一个角色的控制,但它继续提出第二个角色,尽管我们认为它也变得越来越容易辩护。在合唱之外,有一些理论上的建议,而是识别DL和人类认知之间的重要分界线,甚至是不可忽视的。在本文中,我们认为,矛盾的是,深神经模型开发人员对生物神经元的功能的部分冷漠是其成功的原因之一,并促进了务实的机会主义态度。我们认为,甚至有可能瞥见另一种类型的生物学类比,因为现代DL开发中的启发式方法本质上是与自然进化的相似之处。
这项工作的结果打破了关于大脑健康,衰老和患病的髓鞘能量作用的新基础。“尽管我们已经表明,在健康的个体中,髓鞘疗法用锻炼用尽,可以自然地补充休息和健康的饮食,因为人们的年龄和疾病(例如多发性硬化症和阿尔茨海默氏症的疾病),髓磷脂的量化和质量在每种疾病中的各种原因都会降低,并且不会自发地康复。因此,有必要在这些疾病发作或预防性的情况下进行介入,以减少髓磷脂的逐步恶化,无论是临时饮食,还是使用药物来增强其在休息期间用作能源及其补充的用途。”
都依靠大脑(和身体)中的情感反应,这使我们的生活经常令人愉悦,但有时也非常痛苦。表明情绪是我们生活的燃料并不夸张。通常,我们的情绪得到了强烈控制。因此,我们很少会经历原始影响的情况,情绪只是使我们不知所措。这基本上是一件好事,因为控制我们的祖先的情感冲动有助于我们对现代社会的大多数日常态势需求做出更适当的反应。在每种给定情况下总是表现出情感反应是不可接受的。,但是,有些事件可能会使我们脱轨,我们可能会表现出接近原始影响的东西。为了说明我们日常生活中运行情绪系统的不同优势和可见性,让我们考虑两种情况下的情绪调节。在第一种情况下,想象一下自己在工作中与一位同事交谈,您会听到他们也想要促销。听到有关促销活动的伴随着令人不愉快的愤怒感觉。您开始感觉自己的心脏在您的胃中抽水更快和坑中。在您注册这些不愉快的感觉时,您会意识到自己很生气和羡慕,并且您认为同事的晋升不公平。您做得更好!一会儿你被惊呆了。然而,您可以控制自己的情绪,以使其他人向外看。在第二种情况下,想象一个密友或家族成员已经去世。您坐在电脑前;桌子上堆满了工作,您充满了悲伤。你被动摇了;你只是感到难过。您不能集中精力,这是不可能的。您感到非常痛苦,以至于您开始哭泣,表达了情感的表达。在这两个示例中,进化中的外部情况激活了“内置”(强烈遗传锚定)的情感系统,从而触发了原始的情绪,而无需认知标记(或情感的构建)。在第一个例子的背景下,您的同事获得了晋升,您被传递给您有机会获得有限的资源,从而产生了愤怒,羡慕的感觉。在早期
。CC-BY-NC 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 3 月 29 日发布。;https://doi.org/10.1101/2024.03.27.587069 doi:bioRxiv 预印本
语音理解需要人类大脑将声波转换为意义。为此,大脑会生成一个特征层次结构,将感官输入转换为越来越抽象的语言属性。然而,人们对这些分层特征的生成和持续协调方式知之甚少。在这里,我们提出每个语言特征都在大脑中动态表示,以同时表示连续事件。为了检验这个“分层动态编码”(HDC)假设,我们使用时间分辨的大脑活动解码来跟踪语言特征综合层次结构的构建、维护和整合,涵盖声学、语音、亚词汇、词汇、句法和语义表示。为此,我们为 21 名参与者录制了脑磁图 (MEG),让他们听了两个小时的短篇故事。我们的分析揭示了三个主要发现。首先,大脑逐步表征并同时维持连续的特征。其次,这些表征的持续时间取决于它们在语言层次中的级别。第三,每个表征都由动态神经代码维护,该代码以与其相应的语言水平相称的速度发展。这种 HDC 可以随时保持信息,同时限制连续特征之间的干扰。总体而言,HDC 揭示了人类大脑在自然语音理解过程中如何不断构建和维持语言层次,从而将语言理论锚定到其生物学实现上。