国科学技术出版社 , 2019 [2] Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis using event-related brain potentials. Electroencephalogr Clin Neurophysiol, 1988, 70: 510-23 [3] Neuper C, Pfurtscheller G. 134 ERD/ERS based brain computer interface (BCI): effects of motor imagery on senseimotor rhythms. Int J Psychophysiol, 1998, 1: 53-4 [4] McMillan GR, Calhoun G, Middendorf MS, et al. Direct brain interface utilize self-regulation of stable-state visual evoked response (SSVER)[C]. Vancouver: Proc RESNA Ann Conf, 1995 [5] Collinger JL, Wodlinger B, Downey JE, et al. Direct brain interface utilize self-regulation of stable-state visual evoked response (SSVER)[C]. Vancouver: Proc RESNA Ann Conf, 1995 [6] Collinger JL, Wodlinger B, Downey JE, et al.四肢瘫痪患者的高性能神经假体控制。柳叶刀,2013,381:557-64 [6] Ramos-Murguialday A、Broetz D、Rea M 等人。脑机接口在慢性中风康复中的应用:一项对照研究。Ann Neurol,2013,74:100-8 [7] Minev IR、Musienko P、Hirsch A 等人。生物材料。用于长期多模态神经接口的电子硬脑膜。科学,2015,347:159-63 [8] Musk E、Neuralink。一个拥有数千个通道的集成脑机接口平台。J Med Internet Res,2019,21:e16194 [9] Flesher SN、Downey JE、Weiss JM 等人。唤起触觉的脑机接口可改善机械臂控制。Science,2021,372:831-6 [10] Liu D,Xu X,Li D 等。利用局部视觉运动反应进行颅内脑机接口拼写。Neuroimage,2022,258:119363 [11] Willett FR、Avansino DT、Hochberg LR 等。通过手写实现高性能脑机文本通信。Nature,2021,593:249-54 [12] BRAIN 2025:科学愿景[EB/OL]。[2023-12-08]。http://www.braininitiative.nih.gov/pdf/BRAIN2025_508C.pdf [13] 澳大利亚大脑联盟[EB/OL]。[2023-12-06]。 https://ans.org.au/resources/issues/about-the-australian- brain-alliance [14] 解码和控制大脑信息[EB/OL]。[2023-12-06]。https://www.jst.go.jp/presto/bmi/research_ area_E.html [15] IKEGAYA 脑-AI 混合[EB/OL]。[2023-12-06]。https://www.jst.go.jp/erato/en/research_area/ongoing/jpmjer1801.html [16] Jeong SJ, Lee IY, Jun BO, et al. Korea Brain Initiative: emerging issues and Institutionalization of neuroethics.神经元, 2019, 101: 390-3 [17]科技部关于发布科技创新2030——“脑科学与类脑研究”重大项目2021年度项目申报指南的通知[EB/OL]. (2021-09-16)[2023-04-26]。 https://service.most.gov.cn/kjjh_tztg_all/20210916/4583.html [18]北京市人民政府办公厅关于印发《北京市促进未来产业创新发展实施方案》的通知[EB/OL]。 (2023-09-08)。 [2023-12-08]。 https://www.beijing.gov.cn/zhengce/ zhengcefagui/202309/t20230908_3255227.html [19] Brückerhoff-Plückelmann F,Bente I,Becker M,等。
主题:至少30人。男人和女人对情绪的反应不同,分开情感识别或将性别比设置为1:1。刺激:使用标准刺激集。,例如IAP(国际情感图片系统),Gaped(日内瓦情感图片数据库),IAD(国际情感数字声音)等。情感:悲伤,幸福,愤怒,恐惧,喜悦,惊喜,厌恶,中立等。
21世纪被称为“脑研究世纪”,随着脑科学和认知科学的发展,人脑与计算机之间的界限逐渐被打破,出现了一种新型的智能设备——脑机接口。这是一种基于大脑神经活动的新型通信方式,可以实现人脑与计算机之间的直接通信。本文综述了脑机接口的发展历程、目前的技术研究进展以及未来的发展预测。
因此,跨个体、跨场景的脑电分析方法逐渐成为研究热点。越来越多的研究人员将广泛应用脑 电信号分析的特征于跨个体、跨场景的脑电信号分析研究中。 Touryan 等人采用经典的独立成分分 析的特征分析方法描述特征空间,计算功率谱密度( Power Spectral Density , PSD ),并采用顺序 前向浮动选择方法识别频谱特征中的独立成分集,结果表明该方法可以识别出跨场景脑电信号中的 共同成分 [88] 。 Kakkos 等人采用了特征融合的方法,将 PSD 与功能连接特征相结合,提高了跨场景 分类的性能,并证明了脑特征融合在跨场景中的应用更为有效 [89] 。 Xing 等人将模糊熵特征用于跨 场景脑电信号分析,发现模糊熵特征相对于其他特征更能适合跨场景 [90] 。卷积神经网络 ( Convolutional Neural Networks , CNN )和递归神经网络( Recurrent Neural Networks , RNN )等基 于深度学习的新型跨任务模型在跨场景脑电分析中展现了巨大潜力。这些模型能够自动提取特征和 学习复杂的脑电特征,从而有效地缩小不同任务和场景之间的差距,提高模型的泛化能力 [91][92][93] 。 近年来,一些跨学科的方法被创新性地应用于跨场景研究, Zhao 等人提出了一种跨学科的对齐多 源域自适应方法,用于跨个体的 EEG 疲劳状态评估,显著提高了模型的泛化能力 [94] , Zhou 等人在 此基础上进行改进,提出了一种跨任务域自适应方法,有效提升了跨场景认知诊断的性能 [95] 。
摘要:终身学习、个性化学习理念的日益深入人心,以及对有效、价格合理的自动化学习系统的需求,推动和促进了脑机接口(BCI)在教育领域的应用。但作为智能教学技术的代表,BCI的应用仍处于非主流,在理论基础、技术装备、制度保障等方面存在诸多障碍。本研究从技术原理、应用潜力、应用障碍三个方面阐述了BCI在教育领域的优势与不足。虽然在线教学为BCI在教育领域的应用提供了新的机会,但其在改变主流教学方式方面的作用有限。若能将二者有机结合、相互补充,将对提高学生的学习积极性、提高学习效率大有裨益,成为BCI等非主流技术在后疫情时代的有效生存之道。
前言 ...................................................................................................................................................................................I
甘 迪,黄 辉,李承智,等 .脑机接口对义指精细动作控制的研究进展 [ J ] .中国临床医学 , 2025, 32(1): 114-119.GAN D, HUANG H, LI C Z, et al.Advances in research on fine motion control of prosthesis fingers with brain-computer interface [ J ] .Chin J Clin Med, 2025, 32(1): 114-119.DOI: 10.12025/j.issn.1008-6358.2025.20241119
接口技术[j]。信号处理期刊,2023年,39 (8):1386-1398。doi:10。16798/j。ISSN。 1003-0530。 2023。ISSN。1003-0530。2023。
土著藏族已经开发了自适应生理机制,以应对Qinghai-Xizang高原的低氧环境。据报道,与缺氧诱导因子途径相关的内皮PAS蛋白1基因(EPAS1)内的遗传变异与藏族之间的低氧适应性有关。大脑在体内表现出最高的氧气消耗,特别容易受到高空缺氧的影响。我们研究了Qinghai-Xizang高原中藏族的结构和功能性脑网络的遗传影响。在这项研究中,招募了135名年轻土著藏族(62名男性和73名女性)作为实验组。 65名与相关特征相匹配的低地汉族人被招募为遗传变异分析的对照组。基于先前的报道,选择了EPAS1中的12个单核苷酸多态性基因座进行基因分型。随后,使用磁共振成像(MRI)获得了大脑的T1结构和静止状态功能图像。单倍型分析表明,藏族中GA和CAAA单倍型的频率明显高于低地汉族个体。藏人被认为是更高的适应性。因此,藏族被归类为遗传适应的藏族(GHA-tibetans)和遗传适应性较低的藏人(GLA-tibetans)。自适应的大脑变化也参与了自发的休息状态活动网络。与Gla-tibetans相比,Gha-tibetans在左中央回和右侧毛氨酸回去,右侧额叶和右后扣带回回去的皮质表面积明显更大,在左PericalCarine Gyrus和右PericalCarine Gyrus和右上角的皮质体积中,右侧额叶和右后扣回去。在多个网络中观察到功能连接显着提高,包括体育体网络,腹侧注意网络,视觉网络和默认模式网络。这项研究揭示了EPAS1遗传变异与土著藏族中大脑结构和功能网络的适应性之间的关系,表明大脑的适应性变化主要集中在与视觉感知,运动控制和相关功能网络相关的区域上。这些大脑变化可能有助于土著人口在极端环境中更好地调节其身体活动。