最近的研究表明,能够记录患有半晶状体切除术的脑外伤(TBI)患者的脑电图(EEG)中高γ信号(80-160 Hz)。然而,由于与面部和头部运动相关的表面肌电图(EMG)伪影的混淆带宽重叠,因此提取与运动相关的高γ仍然具有挑战性。在我们以前的工作中,我们描述了一种增强的独立组件分析(ICA)方法,用于从EEG中删除EMG伪像,并通过添加EMG来源(ERASE)称为EMG降低。在这里,我们对六名Hemicraniectomies患者记录的EEG测试了该算法,同时他们执行了拇指流失任务。删除的平均值为52±12%(平均±S.E.M)(最大73%)EMG伪影。相比之下,常规ICA从EEG中删除了EMG伪像的平均值为27±19%(平均值±S.E.M)。尤其是,在擦除擦除后,在半晶切除术中的对侧手运动皮层区域中,高γ同步显着改善。更复杂的高γ复杂性是分形维度(FD)。在这里,我们在每个通道上计算了EEG高γ的FD。高γ的相对FD定义为移动状态下的FD在空闲状态下减去FD。我们发现,施加擦除后,高γ的相对FD与半骨切除术相对于半晶状分裂术,与纤维流量的振幅密切相关。的结果表明,与拇指流量相关的电极上的显着相关系数平均为〜0.76,而非流行性辐射切除术区域的同源电极的系数接近0。在常规ICA之后,在两个半开裂区域(最高0.86)和非流行颅切除术区域(最高0.81)中,高γ和力之间的相对FD之间的相关性均保持较高。在所有受试者中,使用擦除后,平均83%的电极与力显着相关。常规ICA后,只有19%的具有显着相关性的电极位于半晶切除术中。
1。什么是创伤性脑损伤(TBI)?创伤性脑损伤称为闭合头部损伤,头部创伤,脑震荡,TBI,轻度TBI,意识障碍和摇动婴儿综合征。这些术语可互换使用。tbi是由外部物理力引起的大脑损伤。它可能会产生意识状态下降或改变的状态,从而导致认知能力和身体功能受损。这些障碍可能是暂时的或永久的,并且会导致部分或全部功能残疾或心理不当。2。谁有危险?受创伤性脑损伤风险最高的人包括儿童,15-24岁的年轻人和75岁及以上的成年人。3。脑损伤的类型是什么?有两种类型的创伤性脑损伤:穿透脑损伤和闭合头部受伤。当异物进入大脑并损害大脑特定区域时,会发生穿透头部受伤。闭合头部受伤导致头部打击。大多数脑外伤的人经历了脑肿胀,也称为水肿。水肿是对大脑血管损害的结果,是人体对脑损伤的反应。4。什么是脑震荡?脑震荡是由于头部打击而导致大脑撞击头骨的。脑震荡不会对大脑造成结构性损害,而是会导致暂时的功能丧失。5。什么是挫伤?6。7。头痛,记忆力丧失和睡眠障碍是一个人在这种受伤后可能遇到的常见症状。挫伤是对大脑的严重打击。挫伤导致大脑瘀伤和功能的更明显的丧失。挫伤需要更全面的护理。定期进行后续治疗和评估。什么是头骨骨折?颅骨骨折会损害皮肤,头骨和大脑。医疗的形式随骨折的位置和严重程度而变化。始终需要仔细观察和随访治疗。许多颅骨骨折导致与日常功能相关的轻度至严重问题,例如步行,记忆,视力和行为。什么是血肿?在大脑的一个或几个位置收集血液会产生血肿。在颅骨和大脑覆盖(硬膜外)之间可能发生血肿(硬膜外),或者可能发生覆盖大脑本身的膜和硬膜下。血肿可能需要进行手术(颅骨切开术)。
因昏迷导致的多重残疾,加上严重至极重度意识障碍,可能对日常医疗中心和康复环境构成严重挑战。除了由专业人员提供的特定药物治疗外,他们可能还需要诊断工具和康复干预措施,使患者能够发挥积极作用、积极参与、独立和自决(Pistoia 等人,2008 年;Lancioni 等人,2014b 年;Formisano 等人,2018 年;Kulyk,2019 年)。因此,该框架内可以针对两个基本目标,即 (a) 评估和 (b) 认知、运动和交流功能的恢复(Lancioni 等人,2009a、2011 年;Kirsch 等人,2017 年;de Tommaso 等人,2020 年)。近期,许多临床和研究工作都致力于上述关键特征(即评估和康复)。关于评估,可以强调两个主要观点。首先,现有文献侧重于确定患者的功能状态。也就是说,确定患者是处于植物人状态还是可以做出更有利的微意识状态诊断(Lancioni 等人,2008a;Formisano 等人,2011;Pistoia 和 Sarà,2012)。其次,批判性地讨论了上述两种临床状况(即植物人状态或微意识状态)之间的二分法,并且任何明确需要澄清这两种状态之间界限的具体需求都需要纠正更直接的策略(Kim 等人,2012)。关于康复,可以承认不同的方法。例如,可以设想环境刺激(Lancioni 等人,2014a、2015)。否则,可以采用深部脑刺激(Lancioni 等人,2010b)。此外,还可以实施脑机接口策略(Stasolla 和 De Pace,2014)。这些策略依赖于不同的理论背景,可能对评估的作用和患者的作用产生临床和实践意义。在干预之前,应决定患者是处于植物人状态还是微意识状态,干预的设置应高度个性化,以确保参与者成功学习(Lancioni 等人,2017)。本文的目的是讨论评估和康复策略,介绍使用该技术作为评估和恢复因中风或脑外伤引起的昏迷后患者和意识障碍的重要手段,并提出一种基于辅助技术的设备和意识障碍之间的整合新假设。
背景:研究表明氨甲环酸 (TXA) 能降低严重受伤患者的死亡率和血液制品需求量。还有人认为氨甲环酸能预防脑外伤患者的继发性脑损伤。虽然之前的研究表明,对于严重受伤的儿科患者,使用 TXA 能改善神经系统结果,但尚未对成人进行此类研究。方法:回顾性审查 2008 年至 2015 年期间伊拉克和阿富汗北大西洋公约组织医院所有成人创伤入院病例。使用单变量和多变量分析来确定与 TXA 给药相关的因素。没有记录头部简明损伤量表 (AIS) 的患者被排除在外。根据人口统计学、损伤机制、损伤严重程度评分 (AIS/ISS)、格拉斯哥昏迷量表 (GCS) 评分、初始生命体征/实验室值和初始输血需求对患者进行倾向匹配。主要结局是住院死亡率和以出院 GCS 评分衡量的神经系统结局。次要结局是呼吸衰竭和血栓栓塞事件发生率。结果:评估了 4476 名 18 岁或以上的受伤患者。其中 265 名(5.9%)患者在最初 24 小时内需要大量输血,174 名(3.9%)患者接受了 TXA。TXA 患者的 ISS 明显较高,穿透性损伤较多,GCS 较低,严重头部损伤发生率较高(AIS > 3),输血需求较高。92 名患者被纳入倾向匹配队列。其中,与未接受 TXA 的患者相比,接受 TXA 的患者死亡率明显降低(0% vs. 10.1%,p = 0.02),GCS 评分改善至 14 至 15,无论入院 GCS 如何(100% vs. 87%,p = 0.01)。两组记录的血栓栓塞事件数量没有显著差异。结论:成年战斗创伤患者使用 TXA 与死亡率降低和神经系统结果改善独立相关,且血栓栓塞事件没有增加。有必要进一步研究 TXA 对脑损伤和神经系统结果的可能机制和影响。(J Trauma Acute Care Surg。2019;87:125 – 129。版权所有 © 2019 Wolters Kluwer Health,Inc. 保留所有权利。)证据级别:治疗性,IV 级。关键词:氨甲环酸;军事;创伤;出血;TBI;神经系统结果。
1. 匹兹堡大学医学院,美国宾夕法尼亚州匹兹堡 2. 匹兹堡大学康复与神经工程实验室,美国宾夕法尼亚州匹兹堡 3. 匹兹堡大学物理医学与康复系,美国宾夕法尼亚州匹兹堡 4. 匹兹堡大学生物工程系,美国宾夕法尼亚州匹兹堡 5. 认知神经基础中心,美国宾夕法尼亚州匹兹堡 6. 匹兹堡大学神经外科系,美国宾夕法尼亚州匹兹堡 7. 匹兹堡大学神经科学系,美国宾夕法尼亚州匹兹堡 8. 匹兹堡大学神经生物学系,美国宾夕法尼亚州匹兹堡 (*) 共同第一作者 (**) 共同最后作者 大脑白质束病变阻止皮质脊髓下行输入有效激活脊髓运动神经元,导致无法治愈的肌肉麻痹。然而,在大多数情况下,皮质脊髓轴突的损伤是不完整的,神经技术可以增强幸存的连接以恢复运动功能。我们在这里假设,通过直接与皮质脊髓运动神经元建立兴奋性连接,运动丘脑的深部脑刺激 (DBS) 可以促进幸存的皮质脊髓纤维的激活,改善瘫痪肢体的运动。我们首先在猴子身上确定了最佳刺激目标和参数,这些目标和参数可以增强手臂、手和面部肌肉的运动诱发电位以及握力。这种增强作用在脑白质病变后仍然存在。然后,我们通过确定相应的最佳丘脑目标 (VIM/VOP 核) 将这些结果转化为人类受试者,并复制了在猴子身上获得的结果。最后,我们设计了一种 DBS 方案,可以立即改善慢性创伤性脑损伤患者的自主握力控制。我们的结果表明,针对运动丘脑的 DBS 可能成为治疗运动瘫痪的有效方法。引言中风或脑外伤 (TBI) 会导致皮质脊髓束 (CST) 损伤,破坏皮质与下运动中枢之间的通讯,导致面部、上肢或下肢肌肉功能丧失 1-4 。由此产生的上肢运动障碍仅在美国就严重影响了大约 1000 万人的生活质量 5,6 。强化物理治疗仍然是唯一的常规干预措施,但疗效有限,特别是对于中度至重度轻瘫患者 7,8 。在大多数情况下,CST 的损伤是不完全的。然而,保留的兴奋性下行连接不足以激活脊髓运动神经元,导致功能性运动轻瘫 9-11 。促进残留皮质脊髓轴突的激活可以重建运动神经元的
传记 Di Ieva 教授于 2002 年获得医学学位,并于 2007 年在意大利获得神经外科专业学位。2007 年至 2009 年,他担任米兰的神经外科顾问,主要参与脑肿瘤和垂体肿瘤的治疗,与耳鼻喉科和颅颌面外科医生、肿瘤学家和放射肿瘤学家密切合作,并参与神经创伤的紧急处理。2009 年至 2011 年,他还在奥地利维也纳医科大学解剖学和细胞生物学中心担任研究员,并在那里获得临床神经科学博士学位(引入神经病理学和 MRI 的创新方法)。2012 年,他被任命为神经解剖学副教授,并多次受邀在意大利、奥地利、瑞士、德国、美国和阿联酋等多个国家教授神经创伤学和神经外科。 2014 年,Di Ieva 教授在多伦多大学圣迈克尔医院完成了为期 3 年的颅底外科临床和研究奖学金,在那里,他还获得了伽玛刀放射外科方面的进一步经验,并继续在加拿大安大略省最大的创伤中心之一进行急诊神经外科手术。他的多学科经验使他能够领导出版“颅底外科手册”(Thieme,纽约,2015 年),这是全球该领域使用最多的书籍之一。2015 年,Di Ieva 博士搬到悉尼,在那里他进一步从事普通神经外科和复杂脊柱外科工作(主要在麦考瑞大学医院、北岸私立医院和皇家北岸医院以及悉尼基督复临安息日会医院),并于 2017 年获得澳大利亚皇家外科学院的奖学金。他是麦考瑞神经外科和麦考瑞大学医院的全职顾问神经外科医师,也是麦考瑞大学的神经外科教授。临床专长 神经肿瘤学(中枢和周围神经系统肿瘤和癌症的外科和多学科治疗);垂体和颅底手术(包括治疗影响脑神经和颅颈交界处的复杂肿瘤和疾病);疼痛治疗(包括显微血管减压和经皮治疗颅面疼痛和面肌痉挛、周围神经减压、脊柱手术、神经调节);显微神经外科、内窥镜和微创(“锁孔”)神经外科;清醒手术和神经监测;脑积水;神经创伤学,包括脑外伤和脊柱损伤以及脑震荡后患者的多学科管理。 学历
定量脑电图和脑电波定量脑电图,有时也称为脑映射,是通过数字技术测量头皮表面的电模式,主要反映皮质电活动或“脑电波”。脑电波以各种频率出现。有些很快,有些很慢。这些脑电图波段的经典名称是 delta、theta、alpha 和 beta。神经反馈是一种生物反馈训练,它使用脑电图 (EEG) 作为控制视觉、听觉或触觉反馈的主要工具。这种反馈用于在大脑中产生学习。这种学习可以提高大脑的适应性和自我调节能力。然而,重要的是,您要了解并同意这种训练过程。一些研究证明,该疗法可有效治疗多种疾病,如注意力缺陷多动障碍 (ADD/ADHD)、焦虑症、抑郁症、自闭症、轻度脑外伤、强迫症等,但其中许多领域仍在进行进一步研究。如果您需要,我可以提供迄今为止的研究书目,或者您可以查阅 www.isnr.org (国际神经反馈与研究学会的网站)以获取全面的神经反馈书目。神经反馈训练是通过使用一种称为脑电图 (EEG) 的灵敏电子仪器来完成的,该仪器可测量个人脑电活动的频率和强度,并立即将此信息发送到高速计算机。这些脑电波信号几乎立即被计算机处理,并以视觉和听觉反馈的形式呈现给个人。然后,临床医生使用复杂的计算机程序帮助患者学习如何使用这种“神经反馈”来识别和更好地调节他们的脑电波模式。对于儿童,计算机程序有时会以游戏的形式出现。通过持续的反馈、指导和练习,患者学会产生所需的脑电波模式。起初,脑电波活动的变化是短暂而短暂的,然而,在相对较短的时间内,新的模式会在与更好的表现和整体健康相关的频率范围内变得更加牢固。一旦患者练习得足够熟练,能够集中注意力并重新调整他们的脑电波模式,训练就结束了。您对神经反馈训练的个人反应或结果无法预测。根据我们的经验,每个人的旅程和结果各不相同,您对该计划的承诺是最重要的方面。我们对您的承诺是提供最好的培训,并公开、诚实地解决您的问题和疑虑。重要的是,我们会定期监测进度并根据需要重新评估,以确定是否应该继续培训。为此,我们将要求您完成频繁的评估,以衡量我们将要跟踪的目标症状。您能否尽可能始终如一地进行这些评估至关重要,因为它提供了有关培训如何影响您的信息,这对您至关重要
定位研究 20 – 22 旨在识别大脑对特定刺激的激活模式,以及连接研究(功能性或有效) ,其重点是研究大脑各区域之间的功能相互作用,无论是在大脑处于休息状态还是在执行特定任务时。 23 – 27 然而,现在众所周知,大脑是高度动态的 28 – 32 因此,为了更全面地了解其功能,需要能够提取大脑记录中的时间信息的方法。与空间域相比,考虑时间域进行分析的 fNIRS 研究数量要少得多。 33 – 40 例如,在参考文献 33 中,通过应用 Higuchi 分形维数算法 41 表明 fNIRS 信号具有高度复杂度。将小波变换应用于 fNIRS 信号,并表明小波系数可用于训练分类器。在参考文献38–40中,熵已被用来评估患者群体(如患有阿尔茨海默病、注意力缺陷多动障碍和脑外伤的患者)中 fNIRS 信号的复杂性,表明它携带的信息可能与疾病有关。所有这些研究表明,在 fNIRS 信号的复杂特征中存在与潜在大脑活动相关的信息。在本文中,我们利用可视性图(VG)提出了一种揭示 fNIRS 时间序列分形特性的方法。VG 是一种最近引入的方法,它将时间序列映射到图形(称为 VG)。正如将要讨论的,构建图的拓扑属性与时间序列的分形和复杂性有关。42、43 与传统的分形分析方法相比,42 VG 在计算上不太复杂,并且已经用于各种研究。 44 – 49 例如,江等人利用心电图表明,采用 VG 分析可以揭示由调解训练引起的动态变化,表现为规律的心跳,这与自主神经系统的调整密切相关。44 朱等人将基于 VG 的方法应用于酗酒识别,表明该方法有望将酗酒者与控制饮酒者区分开来。48 在参考文献 47 中,结果表明,将 VG 应用于脑电图 (EEG) 信号可以提供区分自闭症儿童和非自闭症儿童的特征。在参考文献 49 中,我们已经表明,通过 VG 提取的 GCaMP6 小鼠钙记录的时间特征带有可用于解码行为的鉴别信息。这里需要注意的是,VG 与功能连接研究中常用的基于图论的方法之间的区别。50 , 51 在典型的功能连接研究中,图是在空间域中构建的,即图中的节点对应于通道或体素的位置,并且两个节点之间的链接基于与两个节点相关的时间序列的统计相似性形成,通过相关性等度量来量化。另一方面,正如将在第 2 节中讨论的那样,在 VG 中,节点对应于时间序列中的时间点,并且链接基于时间点之间的自然可见性形成(图 1)。一旦为每个时间序列形成图,就可以提取图度量来表示时间序列的不同属性。在本文中,我们使用 VG 研究两种条件下 fNIRS 时间序列的分形性:当大脑处于休息状态时和当大脑从事任务时。在两种静息状态条件和两种任务条件下记录了 9 名健康男性受试者的 fNIRS 时间序列。从每个时间序列为每个通道和每种条件构建 VG。然后提取可视性图的无标度性 (PSVG) 的功率并在不同条件下进行比较。据我们所知,这是第一项使用 VG 揭示 fNIRS 记录时间序列时间特征的研究,证明了其在识别 fNIRS 记录中的特征方面的可行性,这些特征可用于获得有关大脑功能的新见解。本文的其余部分组织如下。第 2 节介绍了本研究中用于分析的方法。实验设置的详细信息在第 3 节中给出。第 4 节介绍了结果,最后,在第 5 节中提供了一些讨论。第 2 节描述了本研究中使用的分析方法。第 3 节给出了实验装置的详细信息。第 4 节介绍了结果,最后,第 5 节进行了一些讨论。第 2 节描述了本研究中使用的分析方法。第 3 节给出了实验装置的详细信息。第 4 节介绍了结果,最后,第 5 节进行了一些讨论。
脑损伤后的运动功能 Erinn M. Grigsby 1,2,& , Lilly W. Tang 1,3,& , Arianna Damiani 1,4 , Jonathan C. Ho 1,3 , Isabella M. Montanaro 1,4 , Sirisha Nouduri 1,3 , Sara Trant 5 , Theodora Constantine 6 , Gregory M.亚当斯 6 、凯文·弗兰泽斯 2 、布拉德福德·Z·马洪 7,8 、朱莉·A·菲兹 9,10,11,12 、唐纳德·J·克拉蒙德 6 、凯拉·L·斯蒂潘西奇 13 、豪尔赫·A·冈萨雷斯·马丁内斯 6,10,12,14,+ 、埃尔维拉·皮隆迪尼 1,2,4,12,15,+, * 1. 康复匹兹堡大学神经工程实验室,3520 Fifth Avenue,Suite 300,匹兹堡,宾夕法尼亚州,美国,15213 2. 匹兹堡大学物理医学与康复系,3471 Fifth Avenue,Suite 910,匹兹堡,宾夕法尼亚州,美国,15213 3. 匹兹堡大学医学院,3550 Terrace St,匹兹堡,宾夕法尼亚州,美国,15213 4. 匹兹堡大学生物工程系,151 Benedum Hall,匹兹堡,宾夕法尼亚州,美国,15261 5. 匹兹堡大学耳鼻喉科系,宾夕法尼亚州,美国,15213 6. 匹兹堡大学医学中心神经外科系,200 Lothrop Street,Suite b-400,匹兹堡,宾夕法尼亚州,美国,15213 7. 卡内基梅隆大学心理学系,5000 Forbes Avenue,匹兹堡,宾夕法尼亚州,15213 8. 卡内基梅隆大学神经科学研究所,5000 Forbes Avenue,匹兹堡,宾夕法尼亚州,15213 9. 匹兹堡大学交流科学与障碍系,宾夕法尼亚州,美国,15213 10. 匹兹堡大学神经科学系,宾夕法尼亚州,美国,15213 11. 匹兹堡大学心理学系,宾夕法尼亚州,美国,1521 12. 认知神经基础中心,4400 Fifth Avenue,Suite 115,匹兹堡,宾夕法尼亚州,美国,15213 13. 布法罗大学交流障碍与科学系,122卡里大厅,南校区,纽约州布法罗,美国 14214 14. 匹兹堡大学神经生物学系,200 Lothrop Street,房间 E1440,宾夕法尼亚州匹兹堡,美国,15213 15. 匹兹堡大学临床和转化科学研究所 (CTSI),宾夕法尼亚州匹兹堡,美国 15213 & 这些作者贡献相同 + 共同资深作者 * 通讯作者,elvirap@pitt.edu 摘要 说话和吞咽是复杂的运动行为,依赖于来自运动皮层区域输入神经信号的完整性来控制头部和颈部的肌肉。这些神经通路的损伤会导致关键肌肉无力,从而引起构音障碍和吞咽困难,从而造成严重的社会孤立和吸入和窒息的风险。我们在此展示了运动丘脑的深部脑刺激 (DBS) 改善了两名患有构音障碍和吞咽困难的参与者的言语和吞咽功能。首先,我们证明了 DBS 增加了面部运动皮层的兴奋,增强了运动诱发电位,以及 n=10 名神经通路完整的志愿者的口面发音器官的运动范围和速度。然后,我们证明这种增强作用可立即改善因脑损伤而导致中度吞咽困难和严重构音障碍的患者的吞咽功能。在这个受试者和另一个患有轻度构音障碍的受试者中,我们证明DBS可立即改善呼吸、发声、共振和发音控制障碍,从而使言语清晰度在临床上得到显著改善。我们的数据首次提供了人体证据,证明DBS可用于治疗脑损伤患者的吞咽困难和构音障碍。自然清晰的言语需要控制四个子系统:呼吸、发声、共振和发音;同样,吞咽涉及口腔、咽、喉和食道的顺序协调运动,以安全有效地将物质摄入胃中。这些系统的精确和协调激活取决于皮质脊髓束 (CST) 和皮质延髓束 (CBT) 的完整性,皮质脊髓束支配位于胸部、颈部和肩部的呼吸肌,而皮质延髓束则为喉部、腭部、舌部和面部肌肉提供双侧神经支配 1 。由于中风、脑外伤 (TBI)、脑肿瘤或神经退行性疾病而导致的任何一条束中断的皮质下病变会导致面部和口咽肌肉的意志控制无力和缺陷。这可能会导致各种不良的听觉感知语音特征,例如声音中断和质量受损、语音强度降低或声音产生不精确。这些损伤中的任何一种单独或组合都可能会导致面部和口咽肌肉的意志控制能力减弱和缺陷。这可能会导致各种不良的听觉感知语音特征,例如声音中断和质量受损、语音强度降低或声音产生不精确。这些障碍中的任何一种单独或组合都可能会导致面部和口咽肌肉的意志控制能力减弱和缺陷。这可能会导致各种不良的听觉感知语音特征,例如声音中断和质量受损、语音强度降低或声音产生不精确。这些障碍中的任何一种单独或组合都可能