摘要 我们介绍了 MetaArms,这是一种可穿戴的拟人机械臂和机械手,具有六个自由度,由用户的腿和脚操作。我们的总体研究目标是使用身体重塑方法重新想象我们的身体在可穿戴机器人的帮助下可以做什么。为此,我们提出了一个初步的探索性案例研究。MetaArms 的两个机械臂由用户的脚部运动控制,机械手可以根据用户的脚趾弯曲来抓取物体。用户的脚上还会呈现触觉反馈,与机械手上触摸的物体相关,从而创建一个闭环系统。我们对该系统进行了正式和非正式的评估,前者根据菲茨定律使用 2D 指向任务。据报道,该系统 12 个用户的总吞吐量为 1.01 比特/秒(标准差 0.39)。我们还提供了来自 230 多名用户的非正式反馈。我们发现 MetaArms 证明了身体重塑方法在机器人肢体设计中的可行性,这可能有助于我们重新想象人体可以做什么。
2024 年 1 月 24 日,欧盟发起了一项倡议,旨在探讨对欧洲公司在海外进行某些投资的可能性限制。直到最近,控制对外直接投资的前景还是不可想象的。然而,欧盟最近经历了地缘经济转变,欧盟委员会和成员国重新审视了经济相互依存的安全影响。欧盟于 2019 年实施了入境外商直接投资审查框架,2023 年实施了反胁迫手段,并正在对出口管制、外国补贴和采购实践的方法进行现代化改造。然而,这些工具都不能完全解决对外直接投资带来的安全风险,竞争对手国家可以通过对外直接投资获得用于军事和监视目的的两用技术和相关专有技术。欧盟委员会在主席乌尔苏拉·冯德莱恩 (Ursula von der Leyen) 2023 年 3 月关于中欧关系的讲话中首次表达了对对外直接投资控制的兴趣。2023 年 6 月,委员会发布了《欧盟加强经济安全方针》。该战略概述了三大政策支柱:“促进”、“保护”和“合作”,以尽量减少“在地缘政治紧张加剧和技术变革加速的背景下某些经济流动带来的风险,同时保持最高水平的经济开放和活力”。一个由成员国代表和委员会官员组成的专家组被指示评估现有贸易安全规则中可能需要限制对外直接投资的漏洞。由于大多数欧盟成员国不监控对外直接投资,因此对这一问题进行系统评估一直具有挑战性。2024 年 1 月的一揽子计划包括一份关于对外投资的白皮书,概述了可能实施此类控制的逐步方法:
文学回顾过去的思维(2015年前)Crick [5]断言,科学家在所谓的计算机时代的早期以不同的方式使用了机器和大脑。一种意见是使计算机尽可能聪明。该地区后来被称为人工智能(AI,John Carthy,计算机科学家,1956年)。看来,那些专注于探索大脑互连规则的人做出了最重要的贡献。一种“神经元代数” [6-8]。尽管产生了感官处理的层次视图的电子版本,但在1950年代末,当Boden确定计算机程序实际上可以建模相当复杂的感觉过程,并且该程序的功能可能会随着时间的推移而改变。当前对物体的澄清是该开发工作的直接结果。一个重大突破。看来,后来的模型可以更好地解释了人脑的工作原理,包括真实机制的启示。尽管在人工场景分析等领域的计算机面部识别和发展方面取得了巨大进展,但被称为机器视觉的领域仍需要更多地赶上人们头脑中发生的情况。
脑对脑接口 (BBI) 是一种通过神经成像和神经调节技术的组合促进两个大脑之间直接信息传输的系统。这些系统可以根据另一个用户的神经信号刺激一个用户的大脑。虽然脑机接口经常在人机交互 (HCI) 游戏和游戏社区中讨论,但 BBI 尚未得到充分探索。在本文中,我们通过提出三种类型的“心灵感应游戏体验”来研究 BBI 系统的社交游戏潜力,这些体验基于我们在之前的研究中设计、设计和评估的可穿戴 BBI 系统“PsiNet”。该系统通过脑电图 (EEG) 作为系统输入来测量玩家的神经活动,并使用经颅电刺激 (tES) 作为系统输出来刺激其他用户的相关大脑活动。我们希望这项工作能够激励游戏设计研究人员使用 BBI 系统等神经技术创造新颖的游戏体验。
• 儿童障碍性疾病( Childhood Disorder ) :了解自 闭 症( Autism )、注意缺陷多 动 障碍 ( Attention Deficit Hyperactivity Disorder )、唐氏 综 合症( Down Syndrome )、 阅读 障碍 ( Dyslexia )等疾病的症状、成因、治 疗 • 上 瘾 ( Addiction ) : 了解上 瘾 的生理机制; * 导 致上 瘾 的常 见药 品及其引 发 的症状和治 疗 方式, 包括酒精( Alcohol )、尼古丁( Nicotine )、大麻( Marijuana )、 鸦 片( Opiates )、 兴奋剂 ( Psychostimulants )等;探索行 为上瘾(如网络游戏等)的成因及防治方式 • 退行性疾病( Degenerative Disease) :了解阿 兹 海默症( Alzheimer's Disease )、肌萎 缩侧 索硬化 症( Amyotrophic Lateral Sclerosis, ALS )、亨廷 顿综合症( Huntington's Disease )、帕金森症 ( Parkinson's Disease )的症状、成因和治 疗 • 精神疾病( Psychiatry ):了解焦 虑 症( Anxiety Disorders )、妥瑞氏 综 合症( Tourette Syndrome )、抑郁症( Depression )、躁郁症 ( Bipolar Disease )、精神分裂症 ( Schizophrenia )的症状、成因和治 疗 • 脑损伤( Illness and Injury ): 了解 疼痛 ( Pain )、 癫痫 ( Epilepsy )、中 风 ( Stroke )、 * 脑 瘤 ( Brain Tumors )、 * 多 发 性硬化( Multiple Sclerosis )、 * 神 经创伤 ( Neurological Trauma )的症 状、成因和治 疗 方式 • 脑疾病相关的公共医学:探索如何宣传普及脑疾病预防知识、推动社会对脑疾病患者的关注等 四、 脑研究及技术等
摘要 明尼苏达大学的研究人员率先提出了脑控无人机的概念,并由此引发了一系列研究。这些早期的努力为更先进的脑控无人机原型奠定了基础。然而,由于 BCI 信号具有非平稳性和高维性,因此本质上非常复杂。因此,仔细考虑特征提取和分类过程至关重要。本研究引入了一种新方法,将预训练的 CNN 与经典神经网络分类器和 STFT 频谱相结合,形成多层 CNN 模型 (MTCNN)。MTCNN 模型用于解码两类运动想象 (MI) 信号,从而实现对无人机上下运动的控制。本研究的实验阶段涉及四个关键实验。第一个实验使用大量数据集评估了 MTCNN 模型的性能,分类准确率高达 99.1%。第二个和第三个实验针对同一受试者在两个不同的数据集上评估了该模型,成功解决了与受试者间和受试者内差异相关的挑战。 MTCNN 模型在两个数据集上都实现了 99.7% 的出色分类准确率。在第四次实验中,该模型在另一个数据集上进行了验证,实现了 100% 和 99.6% 的分类准确率。值得注意的是,MTCNN 模型在两个 BCI 竞赛数据集上的准确率超过了现有文献。总之,MTCNN 模型展示了其解码与左手和右手运动相关的 MI 信号的潜力,为脑控无人机领域提供了有希望的应用,特别是在控制上下运动方面。此外,MTCNN 模型有可能通过促进该模型与基于 MI 的无人机控制系统的集成,为 BCI-MI 社区做出重大贡献。
Draper 开发了 DFBW,作为其在阿波罗制导计算机方面的工作的延伸。该概念使用高度可靠的计算机和电子飞行控制系统(而不是机械或液压系统)来稳定和操纵飞行器。计算机能够比人类飞行员执行更频繁的调整,从而有助于保持稳定性,同时提供更高的机动性。
该战略是一系列活动的一部分,旨在支持我们共同的目标,即为有照料经验的儿童和年轻人提供更好的服务。企业育儿战略与“一个城市计划”、“布里斯托尔市议会企业战略”、“安置充足战略”和“布里斯托尔归属战略”以及其他许多战略的结合,使我们对企业育儿的优先事项和方法达成了共识,特别是布里斯托尔企业战略中的主题 1:一个每个孩子都属于的城市,每个孩子都能获得最好的人生开端,无论他们出生在什么环境中。
制定可操作的、基于证据的公共卫生指导。CDC 将制定和更新有关遏制和缓解的公共卫生指导,提供衡量和监测医疗机构、学校、工作场所和普通公众中 COVID-19 发病率和流行率的指标,包括联邦政府广泛传播的以指标为导向的重新开放指导。根据最新的国家和州数据,CDC 将提供和更新有关关键问题的指导,例如物理距离协议、检测、接触者追踪、重新开放学校和企业以及戴口罩。CDC 还将为老年人和其他高风险人群(包括残疾人)提供有针对性的指导。
摘 要 : 目的:本研究旨在明确枳椇果梗多糖( HDPs )对酒精暴露所致的小鼠神经行为异常的改善效果,并探究谷 氨酸代谢和紧密连接蛋白表达在其中的作用。方法:雄性 C57BL/6 小鼠按 114 μL/20 g 剂量连续酒精灌胃 14 d ,建 立酒精暴露模型,同时设置干预组进行 HDPs 干预( 114 μL/20 g 酒精 +100 mg/kg HDPs )。应用行为学实验(旷场 实验、高架十字迷宫实验)评估神经行为学变化,采用气相色谱法测定小鼠血液中乙醇浓度, γ -H2AX 荧光检测小 鼠脑海马组织 DNA 损伤,免疫组化分析检测小鼠脑组织中紧密连接蛋白 Claudin-1 和 ZO-1 的表达,并通过超高 效液相色谱 - 四级杆飞行时间质谱法( UPLC-Q-TOF-MS )代谢组学技术对小鼠脑组织代谢物进行分析。结果: HDPs 可有效降低酒精暴露小鼠血液乙醇浓度,由 4.69±0.29 g/L 降至 1.64±0.104 g/L ;改善酒精暴露所致的小鼠神 经行为异常,旷场实验中,与酒精组相比, HDPs 干预组总路程显着提升至 27340±3304 cm ( P <0.05 ),平均速度 显着提升至 67.4±13.4 cm/s ( P <0.05 ),不动时间缩短 29% ( P <0.05 );高架十字迷宫实验中,与酒精组相比, HDPs 干预组闭臂停留时间显着减少至 195.6±10.3 s ( P <0.05 ),开放臂进入次数显着增加 26% ( P <0.05 ));还 可降低酒精诱导的脑组织氧化应激与 DNA 损伤水平, ROS 、 MDA 分别降低 5.4% 、 29.5% ( P <0.05 ), T-AOC 提 高 10.9% ,上调脑海马组织中 Claudin-1 ( 2.2 倍)和 ZO-1 ( 0.1 倍)蛋白的表达;并调节脑组织谷氨酸代谢通路, 提高甘氨酸( 19.7% )、谷光甘肽( 25% )、琥珀酸( 22.6% )等代谢物水平。结论: HDPs 可有效改善酒精对小鼠 神经行为的影响,其机制或可能通过抗氧化、保护紧密连接蛋白和调节谷氨酸代谢通路发挥作用,研究结果可为 扩展枳椇资源在食品领域中的应用提供理论依据。