摘要 — 神经心理学研究表明,不同大脑功能区域之间的合作活动推动了高级认知过程。为了了解大脑不同功能区域内和之间的大脑活动,我们提出了一种新型神经学启发式图神经网络 LGGNet,用于学习脑机接口 (BCI) 的脑电图 (EEG) 的局部-全局图表示。LGGNet 的输入层由一系列具有多尺度 1D 卷积核和内核级注意力融合的时间卷积组成。它捕获 EEG 的时间动态,然后将其作为所提出的局部和全局图过滤层的输入。LGGNet 使用一组定义的具有神经生理学意义的局部和全局图,对大脑功能区域内和之间的复杂关系进行建模。在稳健的嵌套交叉验证设置下,在三个公开可用的数据集上对四类认知分类任务(即注意力、疲劳、情绪和偏好分类任务)评估了所提出的方法。 LGGNet 与 DeepConvNet、EEGNet、R2G-STNN、TSception、RGNN、AMCNN-DGCN、HRNN 和 GraphNet 等最先进的方法进行了比较。结果表明,LGGNet 的表现优于这些方法,并且在大多数情况下,改进具有统计意义(p < 0.05)。结果表明,将神经科学先验知识引入神经网络设计可以提高分类性能。源代码可以在 https://github.com/yi-ding-cs/LGG 找到
摘要 — 缺乏足够的训练样本和嘈杂的高维特征是基于脑电图 (EEG) 的脑机接口 (BCI) 的运动想象 (MI) 解码算法面临的主要挑战。为了应对这些挑战,受 MI 的神经生理特征的启发,本文提出了一种用于 MI 分类的新型滤波器组卷积网络 (FBCNet)。FBCNet 采用多视图数据表示,然后进行空间滤波以提取光谱空间判别特征。这种多阶段方法即使在训练数据有限的情况下也能有效地训练网络。更重要的是,在 FBCNet 中,我们提出了一种新的方差层,可以有效地聚合 EEG 时域信息。通过这种设计,我们在四个 MI 数据集上将 FBCNet 与最先进的 (SOTA) BCI 算法进行了比较:BCI 竞赛 IV 数据集 2a (BCIC-IV-2a)、OpenBMI 数据集和两个来自慢性中风患者的大型数据集。结果表明,通过实现 76.20% 的 4 类分类准确率,FBCNet 为 BCIC-IV-2a 数据集设定了新的 SOTA。在其他三个数据集上,FBCNet 的二分类准确率提高了 8%。此外,我们使用可解释的 AI 技术提供了第一份关于健康受试者和中风患者之间判别性 EEG 特征差异的报告。此外,FBCNet 源代码可在 https://github.com/ravikiran-mane/FBCNet 上找到。
患有肌萎缩侧索硬化症 (ALS) 的人由于肌肉无力而难以与家人和护理人员沟通。本研究调查了 ALS 患者的脑信号是否可用于控制拼写应用程序。具体来说,当参与者试图握拳时,计算机算法检测到植入其大脑表面的电极的神经活动增加,从而产生鼠标点击。参与者使用这些自发的点击从拼写应用程序中选择字母或单词来输入句子。我们的算法使用不到一小时的记录脑信号进行训练,然后在三个月内可靠地运行。这种方法可能用于在较长时间内恢复其他严重瘫痪者的沟通,并且只需短暂的训练期即可。
摘要 — 训练后量化 (PTQ) 是一种用于优化和减少机器学习模型的内存占用和计算要求的技术。它主要用于神经网络。对于完全可移植且可在各种情况下使用的脑机接口 (BCI),有必要提供存储和计算量轻量级的方法。在本文中,我们提出对脑机接口中最先进的方法进行训练后量化的评估,并评估其对准确性的影响。我们评估了代表一个主要 BCI 范式的事件相关电位单次检测的性能。当在空间滤波器和分类器上应用 PTQ 时,受试者工作特征曲线下面积从 0.861 下降到 0.825,同时将模型的大小减少了约 × 15。结果支持以下结论:PTQ 可以显着减少模型的内存占用,同时保持大致相同的准确度。
运动脑机接口 (BMI) 解码神经信号,帮助瘫痪患者移动和交流。尽管在过去二十年中取得了重大进展,但 BMI 仍面临着临床可行性的关键障碍。侵入式 BMI 可以实现熟练的光标和机械臂控制,但需要神经外科手术,对患者构成重大风险。非侵入式 BMI 没有神经外科手术风险,但性能较低,有时使用起来非常令人沮丧,阻碍了广泛采用。我们通过构建高性能的非侵入式 BMI 朝着打破这种性能风险权衡迈出了一步。17 限制非侵入式 BMI 解码器性能的关键限制是其较差的神经信噪比。为了克服这个问题,我们贡献了 (1) 一种新颖的 EEG 解码方法和 (2) 人工智能 (AI) 副驾驶,可以推断任务目标并帮助完成行动。我们证明,借助这种“AI-BMI”,结合使用卷积神经网络 (CNN) 和类似 ReFIT 的卡尔曼滤波器 (KF) 的新型自适应解码方法,健康用户和瘫痪参与者可以自主且熟练地控制计算机光标和机械臂。使用 AI 副驾驶可将目标获取速度提高 4 倍。在标准的中心向外光标控制任务中,目标获取速度提高了 3 倍,并使用户能够控制机械臂执行顺序拾取和放置任务,将 4 个随机放置的块移动到 4 个随机选择的位置。随着 AI 副驾驶的改进,这种方法可能会产生临床上可行的非侵入式 AI-BMI。26
摘要 人工智能 (AI) 已成为神经病学领域的一种变革性工具,为脑部疾病的诊断、治疗和管理提供了创新的解决方案。本综述重点介绍了 AI 在三个关键领域的应用:中风、阿尔茨海默病和动脉瘤。通过分析机器学习算法、深度学习模型和神经网络的最新进展,本文强调了 AI 在提高诊断准确性、预测疾病进展和个性化治疗计划方面的重大影响。在中风的背景下,AI 在增强成像技术和预测患者结果方面发挥了重要作用。对于阿尔茨海默病,通过分析神经影像和临床数据,AI 驱动的工具在早期检测和监测疾病进展方面显示出良好的前景。在动脉瘤的情况下,AI 应用改善了检测和风险评估,促进了及时有效的干预。尽管取得了这些进展,但本综述还讨论了与 AI 整合到临床实践相关的伦理考虑、挑战和局限性。这篇浅显的评论旨在为研究人员、临床医生和政策制定者提供宝贵的见解,促进人工智能技术在脑部疾病管理中的进一步探索和实施,以及脑部疾病成像的商业平台。关键词:脑卒中、阿尔茨海默病、动脉瘤、人工智能、脑部疾病
患有大脑或脊髓相关瘫痪的人通常需要依靠他人来完成基本任务,这限制了他们的独立性。一种潜在的解决方案是脑机接口 (BMI),它可以让他们通过将大脑活动解码为运动命令来自愿控制外部设备(例如机械臂)。在过去十年中,深度学习解码器在大多数 BMI 应用中都取得了最先进的成果,从语音生成到手指控制。然而,深度学习解码器的“黑匣子”性质可能会导致意外行为,从而在现实世界的物理控制场景中造成重大安全隐患。在这些应用中,可解释但性能较低的解码器(例如卡尔曼滤波器 (KF))仍然是常态。在这项研究中,我们设计了一个基于 KalmanNet 的 BMI 解码器,KalmanNet 是 KF 的扩展,它使用循环神经网络来增强其操作以计算卡尔曼增益。这会导致在输入和动态之间变化的“信任”。我们使用该算法根据两只猴子的大脑活动来预测手指运动。我们将离线(预先记录的数据,n = 13 天)和在线(实时预测,n = 5 天)的 KalmanNet 结果与简单的 KF 和两种具有最先进结果的最新深度学习算法进行了比较:tcFNN 和 LSTM。KalmanNet 在离线和在线模式下取得了与其他深度学习模型相当或更好的结果,依靠动态模型来停止,而更多地依靠神经输入来启动运动。我们通过实施使用相同策略的异方差 KF 进一步验证了这一机制,并且它也接近最先进的性能,同时仍在标准 KF 的可解释范围内。然而,我们也看到了 KalmanNet 的两个缺点。KalmanNet 与现有的深度学习解码器一样具有有限的泛化能力,并且它使用 KF 作为归纳偏差在存在看不见的噪声分布的情况下限制了其性能。尽管存在这种权衡,我们的分析成功地整合了传统控制和现代深度学习方法,以激发高性能且仍可解释的 BMI 设计。
5 上海交通大学生物医学工程学院,上海,200030 【摘要】脑机接口(BCI)设备是进行神经刺激和记录的重要工具,在神经系统疾病的诊断和治疗中有着广阔的应用前景。此外,磁共振成像(MRI)是一种有效且非侵入性的全脑信号捕获技术,可以提供大脑结构和激活模式的详细信息。将BCI设备的神经刺激/记录功能与MRI的非侵入性检测功能相结合对脑功能分析具有重要意义。然而,这种结合对神经接口设备的磁和电性能提出了特定的要求。首先探讨了BCI设备与MRI之间的相互作用,随后对二者结合可能产生的安全风险进行总结和整理,从BCI设备的金属电极、导线等危害的来源入手,分析了存在的问题,并总结了目前的研究对策。最后,简要讨论了BCI磁共振安全性的监管问题,并提出了增强相关BCI设备磁共振兼容性的建议。
BCI 系统包括大脑或中枢神经系统 (CNS)、脑信号采集、神经反馈、信号处理和解码、控制接口和外围设备(图 1 上部)。用户的 CNS 是 BCI 系统中最复杂、最活跃、适应性最强的子系统,不可或缺。因此,BCI 系统的设计和评估需要优先考虑用户和人体工程学。脑信号采集是 BCI 系统的另一个关键组成部分,通常是实际瓶颈之一;获取高质量的脑信号至关重要。如今,可以使用多种技术记录大脑活动,例如神经元尖峰检测(NSD,细胞外或细胞内)、皮层电图 (ECoG)、脑电图 (EEG)、脑磁图 (MEG)、正电子发射断层扫描 (PET)、功能性磁共振成像 (fMRI) 和功能性近红外光谱 (fNIRS)。 2 其中,MEG、PET、fMRI技术要求高,价格昂贵,不便携,限制了其在BCI中的广泛应用;另一方面,PET、fMRI、fNIRS依赖于脑代谢的检测,空间分辨率高,时间分辨率低,在目前的技术水平下不太适合快速的脑机交互;EEG可以无创地记录头皮信号,安全可靠,但其空间分辨率和信噪比并不比侵入式ECoG和NSD好,后者也有更广泛的应用。