国际大学气候联盟(IUCA)与未水和气候变化专家集团合作估计,IPCC评估的许多气候缓解措施的水需求是附件2(IUCA,2024年)。这项工作还估计了各种缓解作用的相对“水效率”。例如,每千亿升水用于使清洁能量代替化石燃料的能量,估计绿色氢的生产可节省约68.4吉甘顿二氧化碳等效排放,第二代液体生物燃料,大约2吉甘酮,以及约1.7 Gigatonnes左右的轻型电动汽车的电气化。IUCA估计,每千亿升水旨在维护或恢复泥炭地的水桌,将隔离约18.5 Gigatonnes的排放。IUCA估计,每千亿升水旨在维护或恢复泥炭地的水桌,将隔离约18.5 Gigatonnes的排放。
饮用水分配系统中生物膜的存在(DWD)负责水质的恶化和公共卫生风险的可能来源。不同的因素影响分配网络中饮用水(DW)的生物稳定性,例如养分的存在和浓度,水温,管道材料组成,流体动力学条件以及消毒剂残留水平。本综述旨在通过对过去十年中发表的文献进行定性和定量分析来评估DW生物膜消毒策略的当前知识状态。对通过数据库搜索网络和Scopus搜索确定的562个期刊文章进行了系统的审查方法,并选择了85项研究进行详细分析。鉴定出各种用于DW生物膜对照的消毒剂,例如氯,氯胺,紫外线辐照,过氧化氢,二氧化碳,臭氧和其他以较低的频率,即电解水,电粒水,噬菌体,银离子和纳米群。消毒剂会影响生物膜内的微生物群落,减少可培养的细胞和生物膜生物量的数量,并干扰生物膜基质成分。在水中维持有效的残留浓度可以保证长期预防生物膜形成,并改善了分离的生物膜相关的机会性病原体的失活。大多数研究都使用台式实验室设备进行生物膜研究。此外,通过优化一级和次要消毒与其他水处理方法相结合的基于多级轰炸过程的策略改善了机会性病原体的控制,降低了生物膜膜的细胞的氯耐受性,并降低了金属基管道的腐蚀速率。尽管这些设备模仿了实际DWD中发现的条件,但对DW生物膜控制策略的未来研究也应包括对实际DW网络中形成的生物膜的有希望策略的有效性。
茨城县、栃木县、群马县、埼玉县、千叶县、东京都、神奈川县、山梨县、长野县、静冈县 水田 5 (4, 1, --, --) 大田作物 1 (-, 1, --, --) 露天蔬菜 13 (2, 2, 4, 5) 温室园艺 6 (2, 2, --, 2) 果树 7 (2, 2, 1, 2) 花卉 1 (-, --, --, 1) 茶 2 (1, --, --, 1) 畜牧业 2 (1, 1, --, --) 合计 37 (12, 9, 5, 11)
因此,跨个体、跨场景的脑电分析方法逐渐成为研究热点。越来越多的研究人员将广泛应用脑 电信号分析的特征于跨个体、跨场景的脑电信号分析研究中。 Touryan 等人采用经典的独立成分分 析的特征分析方法描述特征空间,计算功率谱密度( Power Spectral Density , PSD ),并采用顺序 前向浮动选择方法识别频谱特征中的独立成分集,结果表明该方法可以识别出跨场景脑电信号中的 共同成分 [88] 。 Kakkos 等人采用了特征融合的方法,将 PSD 与功能连接特征相结合,提高了跨场景 分类的性能,并证明了脑特征融合在跨场景中的应用更为有效 [89] 。 Xing 等人将模糊熵特征用于跨 场景脑电信号分析,发现模糊熵特征相对于其他特征更能适合跨场景 [90] 。卷积神经网络 ( Convolutional Neural Networks , CNN )和递归神经网络( Recurrent Neural Networks , RNN )等基 于深度学习的新型跨任务模型在跨场景脑电分析中展现了巨大潜力。这些模型能够自动提取特征和 学习复杂的脑电特征,从而有效地缩小不同任务和场景之间的差距,提高模型的泛化能力 [91][92][93] 。 近年来,一些跨学科的方法被创新性地应用于跨场景研究, Zhao 等人提出了一种跨学科的对齐多 源域自适应方法,用于跨个体的 EEG 疲劳状态评估,显著提高了模型的泛化能力 [94] , Zhou 等人在 此基础上进行改进,提出了一种跨任务域自适应方法,有效提升了跨场景认知诊断的性能 [95] 。
图S10。 建立用于研究缺血性中风的永久性脑动脉闭塞(PMCAO)模型。 PMCAO手术程序。 CCA,ICA和ECA暴露了,将硅细丝插入CCA和ICA直到到达MCA(有关详细信息的材料和方法)。 用biorender.com创建的数字。 b TTC染色大脑的代表性照片。 白色区域代表PMCAO的梗塞区域。 PMCAO后1、3和6小时,缺血性大脑中SIRT1的mRNA表达水平。 数据表示为折叠变化,相对于假手术组在归一化为GAPDH之后。 误差条表示平均值±S.D. (n = 3)(每组n = 10只小鼠, * p <0.05,*** p <0.001对假手术)。 缩写:CCA,常见的颈动脉; ICA,颈内动脉; ECA,外部颈动脉; MCA,中大脑中动脉; TTC,2,3,5-三苯基四唑氯化物。图S10。建立用于研究缺血性中风的永久性脑动脉闭塞(PMCAO)模型。PMCAO手术程序。CCA,ICA和ECA暴露了,将硅细丝插入CCA和ICA直到到达MCA(有关详细信息的材料和方法)。用biorender.com创建的数字。b TTC染色大脑的代表性照片。白色区域代表PMCAO的梗塞区域。PMCAO后1、3和6小时,缺血性大脑中SIRT1的mRNA表达水平。数据表示为折叠变化,相对于假手术组在归一化为GAPDH之后。误差条表示平均值±S.D.(n = 3)(每组n = 10只小鼠, * p <0.05,*** p <0.001对假手术)。缩写:CCA,常见的颈动脉; ICA,颈内动脉; ECA,外部颈动脉; MCA,中大脑中动脉; TTC,2,3,5-三苯基四唑氯化物。
