(c)浸入量子自旋液体中的磁液滴[15]; (d)磁电材料表面上方的单个电荷,Cr 2 O 3,诱导表面下方的图像单极,然后图像单子在表面上方产生理想的单极磁场[20]。
摘要:耐药性癫痫(DRE)约占癫痫病例的30%,其特征是无法用两种或多种抗癫痫药控制的癫痫发作。患病率估计为每1000人5至10例。传统治疗方法,例如手术切除和神经调节技术,在某些患者中有效,但适用性和不一致的结局。近年来,由于其可能修复神经网络,分泌神经营养因素并调节炎症的潜力,干细胞疗法已成为研究重点。动物模型研究表明,诱导多能干细胞(IPSC)和间质干细胞(MSC)的移植可以降低癫痫发作频率50-80%并改善认知功能。然而,干细胞疗法仍然面临挑战,包括选择细胞来源,移植后存活和功能整合以及长期安全。随着技术和跨学科合作的进步,Stem Cell Therapy有望成为DRE的重要治疗选择,为患者提供了新的希望。
在"⼤脑与机器"这⼀跨学科领域,通信⼯程的最新进展凸显了神经架构对⼯程进展的影响。这促使⼈们开始探索脑启发计算技术,尤其是⽣物识别(BCI)技 术。这些系统促进了活体⼤脑与外部机器之间的双向通信,能够读取⼤脑信号并将其转换为任务指令。此外,闭环BCI 还能以适当的信号刺激⼤脑。该领域的研 究涉及多个学科,包括电⼦学、光⼦学、材料科学、⽣物兼容材料、信号处理和通信⼯程。低维材料(尤其是⽯墨烯等⼆维材料)的特性进⼀步增强了脑启发电 ⼦学的吸引⼒,这些特性是未来类脑计算设备的基础。在⽣物识别(BCI)领域,通信⼯程在促进⼈脑与计算系统在数字通信、物联⽹、新兴技术、空间和IoX 设 备融合等不同领域进⾏⽆缝信息交换⽅⾯发挥着⾄关重要的作⽤。光⼦学和光⼦集成电路(PIC)是这⼀多学科研究中不可或缺的⼀部分,可为⽣物识别(BCI) 提供⾼速、节能的通信和⼀系列优势,包括⾼速数据传输、低功耗、微型化、并⾏处理和光刺激。这些特性使光⼦学成为⼀项前景⼴阔的技术,可推动脑机接⼝ 的发展,并在神经科学和神经⼯程领域实现新的应⽤。
摘要:在染色体10(PTEN)上删除的肿瘤抑制磷酸酶的丧失,对PI3K – AKT -MTOR途径负面调节,与晚期前列腺癌的进展和临床不良结局密切相关。因此,目前正在探索几种治疗方法来对抗PTEN降低的肿瘤。这些包括对PI3K – AKT -MTOR信号网络的经典抑制,以及恢复PTEN功能的新方法,或靶向PTEN调节染色体稳定性,DNA损伤修复和肿瘤微环境。靶向PTEN降低的前列腺癌仍然是临床挑战,但精密医学领域的新进展表明,PTEN损失为将前列腺癌患者分层用于治疗提供了有价值的生物标志物,这可能会改善整体结果。在这里,我们讨论了PTEN损失在前列腺癌管理中的临床意义,并回顾了针对PTEN降低前列腺癌的最新治疗进展。加深我们对PTEN损失如何促进前列腺癌的生长和治疗性耐药性的理解将为未来的临床研究和精确中等医学策略的设计提供信息,这些策略最终将改善患者护理。
脑机接口( brain-computer interface , BCI )是在大脑与外部设备之间建立直 接交互的通信和控制通道。行业起步最早可追溯至 1924 年,经历了前期 的理论探索期、科学论证期,目前已进入成果落地时期。脑机接口最早在 20 世纪未提出,目的是帮助残疾人重新行走或支配上肢,技术发展至今已 更能应用于正常人的生活和生产。随着脑机接口、人工智能、生物医学工 程、神经工程与康复工程、认知神经科学与心理科学等的发展, BCI 的内 涵和外延在不断丰富。近年来,脑机接口技术在医疗领域不断取得新成果, 尤其在临床康复领域,目前以脑功能评估为目的的脑机交互检测,以解码 交流与设备控制为目的的脑机接口应用,以功能重塑康复为目的的脑机训 练反馈等领域的探索及应用越来越深入。随着技术的应用领域不断拓宽, 未来将逐步应用于游戏娱乐、学习教育、智能家居和军事领域。
[1] 韩雪 , 阮梅花 , 王慧媛 , 等 . 神经科学和类脑人工智能发 展 : 机遇与挑战 . 生命科学 , 2016, 28: 1295-307 [2] Ngai J. BRAIN 2.0: transforming neuroscience. Cell, 2022, 185: 4-8 [3] Mehonic A, Kenyon AJ. Brain-inspired computing needs a master plan. Nature, 2022, 604: 255-60 [4] European Brain Research Area. European Research Inventory and Mapping Report[EB/OL]. (2022-02-15) [2023-01-09].https://www.neurodegenerationresearch. eu/2022/02/ebra-releases-mapping-report-investment- in-european-brain-research-still-vital/ [5] Canadian Brain Research Strategy. Brain Research Must Be a National Priority for the Social, Health, and Economic Advancement of Canada[EB/OL]. (2022-10- 07)[2023-01-09]. https://www.ourcommons.ca/Content/ Committee/441/FINA/Brief/BR11979145/br-external/ CanadianBrainResearchStrategy-e.pdf [6] Canadian Brain Research Strategy. Recruitment for CBRS Indigenous Engagement Sessions[EB/OL].(2022-09-20) [2023-01-09]. https://canadianbrain.ca/recruitment-for- indigenous-engagement-sessions/ [7] Brain/MINDS Beyond expands to the international project for primate brain connectome[EB/OL]. (2022-09-30) [2023-01-09]. https://brainminds-beyond.jp/news/2022/ 09/post_21.html [8] Thiebaut de Schotten M, Forkel SJ. The emergent properties of the connected brain. Science, 2022, 378: 505-10 [9] Axer M, Amunts K. Scale matters: the nested human connectome. Science, 2022, 378: 500-4
脑电反馈是一种基于脑电图技术的无创脑刺激方法,通过脑机接口将脑电生理活动信号传送到计算机,将脑电活动的实时变化作为反馈刺激给予被试自身,帮助被试学习如何自我调节大脑活动。脑电反馈应用十分广泛,可作为精神疾病的辅助治疗、健康个体的认知能力提高以及作为脑电生理特征与认知功能相互作用的实验条件。为了对脑电反馈有一个清晰的认识,本文从脑电反馈系统的组成部分、脑电反馈方案的设计要素、脑电反馈的评价以及脑电反馈的机制理论四个部分对其进行了综述。
https://www.mos.gov.cn/kjbgz/202402402_,1898,hhtml)https://www.mos.gov.cn/kjbgz/202402402_,1898,hhtml)
脑机接口作为大脑和外部设备信息交互的渠 道 , 是前沿脑科学和重要脑疾病诊治的底层核心 工具 . 脑机接口是生物技术和信息技术交叉融合 的颠覆性技术 , 其技术研发和落地应用是一个复 杂的系统工程 , 包括神经电极、芯片、算法、通讯、 植入等核心器件和关键技术 , 涵盖微电子、神经 科学、材料学、计算机科学、临床医学、伦理学 等多学科交叉 . 因此 , SCIENCE CHINA Informa-