1。Alexandre Gramfort,Martin Luessi,Eric Larson,Deni A. Engemann,Strohmeier Daniel,Christian Brodbeck,Roman Goj,Mainak Jas,Brooks,Lauri和Matti S.任何Python的Mne-Python。神经科学的前线,7(267):1-13,2013。2。Cabanero-Gome,L.,Hervas,R.,Constance,I。和Rodrig-Benite,L。(2021)。eglib:用于EEG提取的Python模块。3。 Head,T.,Mechcoder,G。L.,&Shcherbatyi,I。 (2018)。 skikit-optimize:v0。 5.2。 版本V0,5 4。 Joel,D。,Berman,Z (2015)。 人脑。 112(50),15468-15473。 5。 Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。3。Head,T.,Mechcoder,G。L.,&Shcherbatyi,I。(2018)。skikit-optimize:v0。5.2。版本V0,5 4。Joel,D。,Berman,Z (2015)。 人脑。 112(50),15468-15473。 5。 Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Joel,D。,Berman,Z(2015)。人脑。112(50),15468-15473。5。Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y. (2017)。 LightGBM:高速公路激动人心的梯度。 神经信息系统的进步,30,3146–3154 6。 Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Go,G.,Meng,Q.,Finy,T.,T.,Chen,W.,W.,W.,... Liu,T.-Y.(2017)。LightGBM:高速公路激动人心的梯度。神经信息系统的进步,30,3146–3154 6。Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。 超越二元类别的性别:对不同差异,心理病理学和基因型的检查。 Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Phillips,Opery,A。K.,Hsu,V.,Ollila,H。M.,Hillary,R。P.,R.,R。,J。,J.&Singh,M。K.(2019)。超越二元类别的性别:对不同差异,心理病理学和基因型的检查。Sychiatry Academy,58(8),787-798。 7。 TOOLE,JM和BOYLAN,G。B. (2017)。 neral:新生儿脑电图的定量特征使用matlab。Sychiatry Academy,58(8),787-798。7。TOOLE,JM和BOYLAN,G。B.(2017)。neral:新生儿脑电图的定量特征使用matlab。ARXIV预印型ARXIV:1704.05694。Vinck,M.,Oostenveld,R.,Van Wingerden,M.,Battaglia,F。,&Pennartz,C。M.(2011)。 在存在体积传导,噪声和样品大小偏置的情况下,改进了相结合的相同步指数。 Neuroimage,55(4),1548-1565。 8。 Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。 功能连通性预测性别:静止大脑连通性中性别差异的证据。 人类脑图,39(4),1765-1776。Vinck,M.,Oostenveld,R.,Van Wingerden,M.,Battaglia,F。,&Pennartz,C。M.(2011)。在存在体积传导,噪声和样品大小偏置的情况下,改进了相结合的相同步指数。Neuroimage,55(4),1548-1565。8。Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。 功能连通性预测性别:静止大脑连通性中性别差异的证据。 人类脑图,39(4),1765-1776。Zhang,C.,Dougherty,C.C.,Baum,S.A.,White,T。,&Michael,A。M.(2018)。功能连通性预测性别:静止大脑连通性中性别差异的证据。人类脑图,39(4),1765-1776。
我们还建议您填写自闭症友好问卷,以准备就诊。如果您在填写 MyChart 中的表格时遇到困难,那么您可以从我们的网站下载纸质副本,并在预约时随身携带。详情请查看二维码。
摘要 — 目标:当存在多个声源时,当前助听器中的降噪算法缺乏有关用户关注的声源的信息。为了解决这个问题,它们可以与听觉注意解码 (AAD) 算法相辅相成,该算法使用脑电图 (EEG) 传感器解码注意力。最先进的 AAD 算法采用刺激重建方法,其中关注源的包络从 EEG 重建并与各个源的包络相关。然而,这种方法在短信号段上表现不佳,而较长的片段在用户切换注意力时会产生不切实际的长检测延迟。方法:我们提出使用滤波器组公共空间模式滤波器 (FB-CSP) 解码注意力的方向焦点作为替代 AAD 范式,它不需要访问干净的源包络。结果:提出的 FB-CSP 方法在短信号段上的表现优于刺激重建方法,在相同任务上的表现也优于卷积神经网络方法。我们实现了高精度(1 秒窗口为 80%,准瞬时决策为 70%),足以实现低于 4 秒的最小预期切换持续时间。我们还证明解码器可以适应来自未见对象的未标记数据,并且仅使用位于耳朵周围的部分 EEG 通道来模拟可穿戴 EEG 设置。结论:提出的 FB-CSP 方法可以快速准确地解码听觉注意力的方向焦点。意义:在非常短的数据段上实现高精度是朝着实用的神经引导听力设备迈出的重要一步。
I.近年来,生物识别技术在日常生活中越来越多地使用。例如,在使用图形和面对图像登录智能手机中。但是,这种生物特征数据始终涉及身体表面。因此,可以使用数字设备(例如摄像机)轻松地被盗(捕获)。If the data are stolen, copies can be made.此外,填充和脸部识别假定仅一次性身份验证,这会导致SPOOFG的风险。使用其生物识别技术对系统的常规用户进行身份验证,即使用户被没有使用该系统许可的冒名顶替者替换,也无法根据一次性的身份验证使用生物识别方法检测SPOOFEF。为了解决这个问题,已经提出了连续的身份验证,因为它比一次性的身份验证更有效。作为适合连续身份验证的生物识别技术,脑波或脑电图(EEG)引起了人们的注意[1]。只要人还活着,信号总是会产生,因此可以连续测量此信息。此外,由于任何人都可以利用脑波,它们是最容易获得的生物识别数据。由于仅在人戴上脑波传感器时才能检测到脑波,因此其他人也无法秘密地窃取数据。但是,传统研究并未提及使用脑电波作为生物识别技术的应用。使用脑波需要用户佩戴脑波传感器,但是这需要时间,因为用户在移动头发的同时将许多电极设置在头皮上。例如,当用户输入房间,登录PC或使用ATM时,这是无法想象的。因此,作为生物识别技术的脑波不适用于一次性身份验证。另一方面,一旦用户佩戴
摘要 — 神经营销是利用神经科学来了解消费者对产品和服务的偏好。因此,它研究与偏好和购买意向相关的神经活动。神经营销被认为是一个新兴的研究领域,部分原因是每年在广告和促销上花费了大约 4000 亿美元。鉴于这个市场的规模,即使性能略有改善也会产生巨大影响。传统的营销方法考虑以问卷、产品评级或评论形式出现的后验用户反馈,但这些方法不能完全捕捉或解释消费者的实时决策过程。已经提出了各种生理测量技术来促进记录决策过程的这一关键方面,包括脑成像技术(功能性磁共振成像 (fMRI)、脑电图 (EEG)、稳态地形图 (SST))和各种生物传感器。EEG 在神经营销中的应用尤其有前景。脑电图 (EEG) 可以检测大脑活动的连续变化,没有明显的时间延迟,这是评估顾客无意识反应和感官反应所必需的。目前市场上有几种类型的脑电图设备,每种都有自己的优点和缺点。研究人员使用其中许多设备对不同年龄组和不同类别的产品进行了实验。由于可以获得深刻的见解,消费者和研究保护组织对神经营销研究领域进行了密切监控,以确保受试者得到适当的保护。本文调查了基于脑电图的神经营销策略的一系列考虑因素,包括可以收集的信息类型、如何向消费者呈现营销刺激、这些策略如何影响消费者的吸引力和记忆力、该领域应用的机器学习技术以及这一新兴领域面临的各种挑战,包括道德问题。关键词:脑电图、神经营销、神经科学、电子商务
研究成果概要(中文):在本研究中,我们旨在开发一种使用 P300 和稳态视觉诱发电位 (SSVEP) 的混合型输入系统,这两种技术在利用脑电图进行字符输入时被广泛使用。该系统发挥了 P300 和 SSVEP 的优势,并弥补了彼此的不足。首先,我们通过视觉刺激呈现建立了一种同时生成方法。接下来,利用呈现方法,我们确认可以通过控制候选字符的呈现时间来有效分离两种不同的脑电图。我们已经证明,我们的原创方法可以实现高速输入。然而,差异程度因对象而异。这是未来需要解决的一个挑战。
神经科学的当前趋势是使用自然主义刺激,例如电影,课堂生物学或视频游戏,旨在在生态上有效的条件下了解大脑功能。自然主义刺激招募复杂和重叠的认知,情感和感觉脑过程。大脑振荡形成了此类过程的基本机制,此外,这些过程可以通过专业知识来修改。尽管大脑作为生物系统是高度非线性的,但通常通过线性方法分析人类皮质功能。这项研究应用了一种相对健壮的非线性方法,即Higuchi分形维度(HFD),将数学专家和新手的皮质功能分类为在脑电图实验室中解决长期且复杂的数学示范。脑成像数据是在自然主义刺激期间长期跨度收集的,可以应用数据驱动的分析。因此,我们还通过机器学习算法探讨了数学专业知识的神经标志。需要新颖的方法来分析自然主义数据,因为基于还原主义和简化研究设计的现实世界中脑功能的理论的表述既具有挑战性又可疑。数据驱动的智能方法可能有助于开发和测试有关复杂大脑功能的新理论。我们的结果阐明了HFD在复杂数学期间对数学专家和新手分析的不同神经签名,并将机器学习作为一种有前途的数据驱动方法,以了解专业知识和数学认知的大脑过程。
嵌入式设备可以在本地实时处理生物医学信号,因此临床研究和治疗应用的生物医学信号分析可以受益匪浅。一个例子是分析癫痫患者的颅内脑电图 (iEEG) 以检测高频振荡 (HFO),这是致痫脑组织的生物标志物。混合信号神经形态电路提供了构建紧凑、低功耗神经网络处理系统的可能性,该系统可以实时在线分析数据。在这里,我们介绍了一种神经形态系统,该系统在同一芯片上结合了神经记录头端和脉冲神经网络 (SNN) 处理核心来处理 iEEG,并展示了它如何可靠地检测 HFO,从而实现最先进的准确性、灵敏度和特异性。这是首次使用混合信号神经形态计算技术实时识别 iEEG 中相关特征的可行性研究。
摘要 — 在癫痫监测中,由于脑电图伪影在幅度和频率上具有形态相似性,因此经常被误认为是癫痫发作,这使得癫痫发作检测系统容易受到更高的误报率的影响。在这项工作中,我们介绍了一种基于并行超低功耗 (PULP) 嵌入式平台上最少数量的脑电图通道的伪影检测算法的实现。分析基于 TUH 脑电图伪影语料库数据集,并重点关注颞电极。首先,我们使用自动机器学习框架在频域中提取最佳特征模型,在 4 个颞脑电图通道设置下实现了 93.95% 的准确率和 0.838 F1 得分。所实现的准确率水平比最先进的水平高出近 20%。然后,这些算法针对 PULP 平台进行并行化和优化,与最先进的低功耗伪影检测框架实现相比,能效提高了 5.21 倍。将此模型与低功耗癫痫发作检测算法相结合,可以在可穿戴外形尺寸和功率预算下使用 300 mAh 电池进行 300 小时的连续监测。这些结果为实现经济实惠、可穿戴、长期癫痫监测解决方案铺平了道路,该解决方案具有低假阳性率和高灵敏度,可满足患者和护理人员的要求。临床意义——所提出的 EEG 伪影检测框架可用于可穿戴 EEG 记录设备,结合基于 EEG 的癫痫发作检测算法,以提高癫痫发作检测场景的稳健性。索引词——医疗保健、时间序列分类、智能边缘计算、机器学习、深度学习
图 1:使用国际 10-20 系统从 (a) 矢状面和 (b) 轴平面 (c) 头皮角度看到的 64 个电极配置表示。注意:A= 耳垂,C = 中央,Pg = 鼻咽,P = 顶叶,F = 额叶,Fp = 额极和 O = 枕叶。
