摘要 简介:中风是全世界发病和死亡的主要原因。虽然脑电图 (EEG) 提供了有关中风后大脑活动的宝贵数据,但定性 EEG 评估可能会被误解。因此,我们研究了定量 EEG (qEEG) 识别可作为中风患者潜在电生理生物标志物的关键波段频率的潜力。材料和方法:进行了一项单中心病例对照研究,其中招募了中风入院患者和健康对照者,并征得其同意。中风患者在入院后 48 小时内进行 EEG 测试,而对照者在门诊评估期间进行 EEG 测试。对 EEG 信号进行预处理,使用 MATLAB 分析其频谱功率,并绘制为地形图。结果:共纳入 194 名参与者,分为缺血性中风患者和对照者。我们研究队列的平均年龄为 55.11 岁(SD±13.12),美国国立卫生研究院卒中量表 (NIHSS) 评分中位数为 6(IQR 4-6),腔隙性卒中是最常见的亚型 (49.5%)。频谱分析,以及随后的脑地形图映射,突出显示了 β、α 和 γ 波段内重要通道的聚集。结论:qEEG 分析确定了卒中后患者感兴趣的重要波段频率,表明其可作为诊断和预后工具。脑地形图映射提供了精确的表示,可以指导干预和康复策略。未来的研究应探索使用机器学习进行卒中检测并提供个性化治疗。关键词:定量脑电图、qEEG、卒中、频谱脑电图、地形介绍卒中是一种异质性疾病,以各种血管、血流动力学和全身异常为特征。根据 2017 年全球疾病、伤害和风险因素负担研究,它是全球第二大死亡原因和第三大残疾原因
摘要 —EEG 解码算法的发展面临着数据稀疏性、受试者多变性和精确注释需求等挑战,所有这些对于推进脑机接口和增强疾病诊断都至关重要。为了解决这些问题,我们提出了一种新颖的两阶段方法,称为自监督状态重建-启动黎曼动力学(EEG-ReMinD),该方法减轻了对监督学习的依赖并整合了固有的几何特征。这种方法可以有效地处理 EEG 数据损坏并减少对标签的依赖。EEG-ReMinD 利用自监督和几何学习技术以及注意机制,在黎曼几何框架内分析 EEG 特征的时间动态,称为黎曼动力学。对两种不同神经退行性疾病的完整和损坏数据集的比较分析强调了 EEG-ReMinD 的增强性能。
急性脑病是一种获得性的整体认知功能障碍,在 ICU 收治的危重患者中很常见。临床上,它表现为一系列的觉醒障碍,严重程度从活动减退、活动过度、谵妄到昏迷不等。这种疾病反映了由潜在病理生理过程引起的急性脑功能障碍 [1] 。急性脑病的病因往往是多因素的,包括药物(如镇静剂输注、止痛药)、非法药物使用、导致细胞因子释放和脑功能障碍的全身性疾病(如脓毒症、肝性脑病)和代谢紊乱(如肾衰竭、电解质紊乱)。癫痫,尤其是非惊厥性癫痫 (NCS),是脑病的常见原因,发生在高达 17.9% 的危重患者中 [2-4] 。急性脑损伤,如中风或颅内出血,也可能直接导致或加重脑病 [5]。
与非人类受试者合作带来了独特的挑战。蓝牙系统经常失去连接,延迟数据收集,这让我意识到实验的规划阶段和实际数据收集是非常不同的。当我们设计实验时,总会有一些我们无法预测的困难,这就是为什么灵活性和创造性也是心理学研究中不可或缺的技能。将 EEG 电极稳定在狗身上也成为一个重大问题,因为电极经常会因为狗的运动而脱落。经过多次尝试,我们能够使用皮带和宠物绷带开发出一种对狗既有效又安全的稳定系统。虽然最初的狗 EEG 系统不包括这些步骤,但我能够学习如何适应并创建独特的解决方案来解决我们研究中的问题。
使用以下覆盖范围政策的说明适用于Cigna公司管理的健康福利计划。某些CIGNA公司和/或业务范围仅向客户提供利用审核服务,并且不做覆盖范围的确定。引用标准福利计划语言和覆盖范围确定不适用于这些客户。覆盖范围政策旨在为解释Cigna Companies管理的某些标准福利计划提供指导。请注意,客户的特定福利计划文件的条款[集团服务协议,覆盖范围证据,覆盖证证书,摘要计划描述(SPD)或类似计划文件]可能与这些承保范围政策所基于的标准福利计划有很大差异。例如,客户的福利计划文件可能包含与覆盖策略中涉及的主题相关的特定排除。发生冲突时,客户的福利计划文件始终取代覆盖策略中的信息。在没有控制联邦或州承保范围授权的情况下,福利最终取决于适用的福利计划文件的条款。在每个特定实例中的覆盖范围确定需要考虑1)根据服务日期生效的适用福利计划文件的条款; 2)任何适用的法律/法规; 3)任何相关的附带资料材料,包括覆盖范围政策; 4)特定情况的具体事实。应自行审查每个覆盖范围请求。提交的索赔医疗主管应在适当的情况下行使临床判断,并在做出个人覆盖范围确定方面酌情决定。如果保险或服务的保险不取决于特定情况,则仅在根据适用的覆盖范围政策中概述的相关标准(包括涵盖的诊断和/或程序代码)中概述的相关标准提交请求的服务。在此保险策略未涵盖的条件或诊断费用时,不允许报销服务(请参见下面的“编码信息”)。在计费时,提供者必须在提交生效日期起使用最适当的代码。
Monte Carlo simulations predict distinct real EEG patterns in individuals with high and low IQs Arturo Tozzi (corresponding author) Center for Nonlinear Science, Department of Physics, University of North Texas, Denton, Texas, USA 1155 Union Circle, #311427 Denton, TX 76203-5017 USA tozziarturo@libero.it ABSTRACT The neural mechanisms underlying individual differences in intelligence are神经科学的主要重点。我们研究了蒙特卡洛模拟在预测实际脑电图模式和识别智力高和低智力个人之间潜在的神经差异方面的有效性。EEG数据是从IQ分类的两组志愿者中收集的,即高IQ组和一个低IQ组。使用最大似然估计将单变量的正态分布拟合到每个EEG通道,然后根据估计参数生成合成数据集。统计分析在内,包括均方根误差(RMSE)计算评估了真实数据和模拟数据之间的比对。我们表明,蒙特卡洛模拟有效地复制了来自两个组的脑电图数据的统计特性,与实际的中心趋势,可变性和整体分布形状非常匹配。特定的脑电图通道,尤其是在额叶和颞两侧区域,两组之间表现出显着差异,指出了潜在的认知能力神经标记。此外,低IQ组表现出更高的可预测性和更一致的神经模式,这反映出较低的RMSE值和几个EEG通道之间的较小标准偏差。lu等。相反,高IQ组显示出更大的可变性和更大的RMSE值,反映了复杂的神经动力学,而复杂的神经动力学通过Monte Carlo Simulations不太可预测。我们的发现强调了蒙特卡洛模拟作为复制脑电图模式,识别认知差异并预测与智能水平相关的脑电图活动的强大工具的实用性。这些见解可以为有针对性认知增强的预测建模,神经认知研究,教育策略和临床干预提供信息。关键字:统计分析;奇怪的任务;合成数据集;脑电图通道。引言探索智力智能的神经机制一直是认知神经科学研究的主要重点。脑电图(EEG)提供了评估认知能力差异的独特见解,包括不同智能水平的个人之间的区别(Friedman等,2019)。具有高度分辨率,非侵入性脑电图评估了同步,复杂性和网络效率之间的相互作用(Van Dellen等,2015)。例如,较高的智商与减少的长距离脑电图信息流和增强的局部处理效率相关联,支持小世界模型(Thatcher等,2016)。额外区域的短脑段延误和增加的连贯性与较高的智力相关,强调了额叶同步的作用(Thatcher等,2005)。Microstate动力学的变化与液体智能及其在认知训练后的增强有关(Santarnecchi等,2017)。静止状态的脑电图研究进一步探索了与智能相关的差异,报告了更聪明的个体中alpha和beta频段中静态间的平衡(Jahidin等,2013)。此外,已经证明,智商与脑电图的能量有负相关,但与特定频率下的信息流强度呈正相关,这强调了效率在神经通信中的作用(Luo等,2021)。(2022)发现,流体智能较高的人会更灵活地分配注意力资源,尤其是在复杂的任务中,如Theta和Alpha EEG活动所反映的那样。在一起,这些发现强调了脑电图在评估智力机制中的实用性,从而揭示了神经效率,半球间协调和适应性资源分配的一致模式。相反,由于脑电图数据的固有可变性,高维度和对噪声的敏感性,对脑电图数据的分析提出了重大挑战(Hassani等,2015)。要应对这些挑战并增强我们建模和预测脑电图模式的能力,需要先进的统计和计算方法。蒙特卡洛模拟已在各种科学学科中广泛使用,为受可变性和不确定性影响的复杂系统建模提供了强大的框架(Metropolis和Ulam,1949; Rubinstein and Kroese,2016)。通过利用从观察到的数据得出的统计特性,蒙特卡洛模拟产生了可能反映现实世界行为的合成数据集(Salvadori等,2024; Jones and Fleming,2024)。一种蒙特卡洛方法可能特别适合脑电图数据,因为它允许研究人员探索和复制神经动力学,而无需大量的实验数据收集。蒙特卡洛方法已应用于神经科学中以模拟和分析
疼痛是一种主观而复杂的症状,其预测、管理和治疗是临床研究中的重大挑战。为了应对这些挑战,寻找可靠、客观的疼痛生物标志物已成为疼痛研究的焦点。脑电图 (EEG) 是一种非侵入性临床工具,由于其时间分辨率、准确性和全面性,已成为评估与疼痛相关的脑区最广泛使用的方法。多通道脑电图 (EEG) 现在是疼痛生物标志物研究的主要技术。本综述讨论了脑电图生物标志物在疼痛研究中的现状和未来前景,并综合了脑电图记录作为疼痛感知可靠生物标志物的潜力的证据。这将有助于为未来疼痛的预测、诊断和干预研究和管理奠定更坚实的基础。
在过去的几十年中,研究人员和专业人员采用了许多方法来检测和测量精神压力,从主观方法(如问卷调查和面对面访谈)到客观方法(分别使用生理信号和神经成像设备,如唾液皮质醇和功能性磁共振成像(fMRI)。在这些方法中,脑电图(EEG)是专业人员和研究人员记录实时脑信号时最常用的非侵入性方法之一。本文通过比较和分析EEG数据收集的方法和协议,包括涉及两大类精神压力(急性和慢性)的电极和大脑区域的选择,强调了每项研究的最新进展。总结和讨论了EEG特征的选择、必要的信号预处理和处理技术以及这些研究中使用的分类模型。
摘要 —脑机接口 (BCI) 在大脑和外部设备之间建立了直接的通信通路。脑电图 (EEG) 因其便利性和低成本而成为 BCI 中最受欢迎的输入信号。大多数基于 EEG 的 BCI 研究都集中在 EEG 信号的准确解码上;然而,EEG 信号也包含丰富的隐私信息,例如用户身份、情绪等,这些信息应该受到保护。本文首先揭示了基于 EEG 的 BCI 中的一个严重的隐私问题,即 EEG 数据中的用户身份很容易被学习,因此来自同一用户的不同 EEG 数据会话可以关联在一起,以更可靠地挖掘隐私信息。为了解决这个问题,我们进一步提出了两种方法将原始 EEG 数据转换为身份不可学习的 EEG 数据,即删除用户身份信息,同时保持主要 BCI 任务的良好性能。在来自五种不同BCI范式的七个EEG数据集上的实验表明,平均而言,生成的不可学习身份的EEG数据可以将用户识别准确率从70.01%降低到最多21.36%,极大地促进了基于EEG的BCI中的用户隐私保护。
工作记忆 (WM) 表示暂时存储在大脑中的信息,是人类认知领域的基础研究课题。脑电图 (EEG) 可以监测大脑的电活动,已广泛应用于测量 WM 水平。然而,一个关键挑战是个体差异可能会导致无效的结果,特别是当建立的模型遇到不熟悉的受试者时。在本文中,我们提出了一种具有空间注意的跨受试者深度适应模型 (CS-DASA),以推广跨受试者的工作量分类。首先,我们将 EEG 时间序列转换为包含空间、光谱和时间信息的多帧 EEG 图像。首先,CS-DASA 中的受试者共享模块从源受试者和目标受试者接收多帧 EEG 图像数据并学习共同的特征表示。然后,在特定主题模块中,实施最大平均差异来测量再生核希尔伯特空间中的域分布差异,这可以为域自适应添加有效的惩罚损失。此外,采用主题到主题的空间注意机制来关注目标图像数据中的判别性空间特征。在包含 13 个主题的公共 WM EEG 数据集上进行的实验表明,所提出的模型能够实现比现有最先进方法更好的性能。