因此,跨个体、跨场景的脑电分析方法逐渐成为研究热点。越来越多的研究人员将广泛应用脑 电信号分析的特征于跨个体、跨场景的脑电信号分析研究中。 Touryan 等人采用经典的独立成分分 析的特征分析方法描述特征空间,计算功率谱密度( Power Spectral Density , PSD ),并采用顺序 前向浮动选择方法识别频谱特征中的独立成分集,结果表明该方法可以识别出跨场景脑电信号中的 共同成分 [88] 。 Kakkos 等人采用了特征融合的方法,将 PSD 与功能连接特征相结合,提高了跨场景 分类的性能,并证明了脑特征融合在跨场景中的应用更为有效 [89] 。 Xing 等人将模糊熵特征用于跨 场景脑电信号分析,发现模糊熵特征相对于其他特征更能适合跨场景 [90] 。卷积神经网络 ( Convolutional Neural Networks , CNN )和递归神经网络( Recurrent Neural Networks , RNN )等基 于深度学习的新型跨任务模型在跨场景脑电分析中展现了巨大潜力。这些模型能够自动提取特征和 学习复杂的脑电特征,从而有效地缩小不同任务和场景之间的差距,提高模型的泛化能力 [91][92][93] 。 近年来,一些跨学科的方法被创新性地应用于跨场景研究, Zhao 等人提出了一种跨学科的对齐多 源域自适应方法,用于跨个体的 EEG 疲劳状态评估,显著提高了模型的泛化能力 [94] , Zhou 等人在 此基础上进行改进,提出了一种跨任务域自适应方法,有效提升了跨场景认知诊断的性能 [95] 。
摘要:终身学习、个性化学习理念的日益深入人心,以及对有效、价格合理的自动化学习系统的需求,推动和促进了脑机接口(BCI)在教育领域的应用。但作为智能教学技术的代表,BCI的应用仍处于非主流,在理论基础、技术装备、制度保障等方面存在诸多障碍。本研究从技术原理、应用潜力、应用障碍三个方面阐述了BCI在教育领域的优势与不足。虽然在线教学为BCI在教育领域的应用提供了新的机会,但其在改变主流教学方式方面的作用有限。若能将二者有机结合、相互补充,将对提高学生的学习积极性、提高学习效率大有裨益,成为BCI等非主流技术在后疫情时代的有效生存之道。
前言 ...................................................................................................................................................................................I
甘 迪,黄 辉,李承智,等 .脑机接口对义指精细动作控制的研究进展 [ J ] .中国临床医学 , 2025, 32(1): 114-119.GAN D, HUANG H, LI C Z, et al.Advances in research on fine motion control of prosthesis fingers with brain-computer interface [ J ] .Chin J Clin Med, 2025, 32(1): 114-119.DOI: 10.12025/j.issn.1008-6358.2025.20241119
接口技术[j]。信号处理期刊,2023年,39 (8):1386-1398。doi:10。16798/j。ISSN。 1003-0530。 2023。ISSN。1003-0530。2023。
土著藏族已经开发了自适应生理机制,以应对Qinghai-Xizang高原的低氧环境。据报道,与缺氧诱导因子途径相关的内皮PAS蛋白1基因(EPAS1)内的遗传变异与藏族之间的低氧适应性有关。大脑在体内表现出最高的氧气消耗,特别容易受到高空缺氧的影响。我们研究了Qinghai-Xizang高原中藏族的结构和功能性脑网络的遗传影响。在这项研究中,招募了135名年轻土著藏族(62名男性和73名女性)作为实验组。 65名与相关特征相匹配的低地汉族人被招募为遗传变异分析的对照组。基于先前的报道,选择了EPAS1中的12个单核苷酸多态性基因座进行基因分型。随后,使用磁共振成像(MRI)获得了大脑的T1结构和静止状态功能图像。单倍型分析表明,藏族中GA和CAAA单倍型的频率明显高于低地汉族个体。藏人被认为是更高的适应性。因此,藏族被归类为遗传适应的藏族(GHA-tibetans)和遗传适应性较低的藏人(GLA-tibetans)。自适应的大脑变化也参与了自发的休息状态活动网络。与Gla-tibetans相比,Gha-tibetans在左中央回和右侧毛氨酸回去,右侧额叶和右后扣带回回去的皮质表面积明显更大,在左PericalCarine Gyrus和右PericalCarine Gyrus和右上角的皮质体积中,右侧额叶和右后扣回去。在多个网络中观察到功能连接显着提高,包括体育体网络,腹侧注意网络,视觉网络和默认模式网络。这项研究揭示了EPAS1遗传变异与土著藏族中大脑结构和功能网络的适应性之间的关系,表明大脑的适应性变化主要集中在与视觉感知,运动控制和相关功能网络相关的区域上。这些大脑变化可能有助于土著人口在极端环境中更好地调节其身体活动。
摘要 脑机接口 (BCI) 使用户能够通过头皮的脑电图 (EEG) 活动或大脑内的单神经元活动来控制设备。这两种方法都有缺点:EEG 分辨率有限且需要大量训练,而单神经元记录具有很大的临床风险并且稳定性有限。我们在此首次证明从大脑表面记录的皮层脑电图 (ECoG) 活动可以使用户快速准确地控制一维计算机光标。我们首先确定了与不同类型的运动和语音意象相关的 ECoG 信号。在 3-24 分钟的短暂训练期内,四名患者随后使用这些信号掌握闭环控制并在一维二元任务中实现 74-100% 的成功率。在额外的开环实验中,我们发现频率高达 180 Hz 的 ECoG 信号编码了有关二维操纵杆运动方向的大量信息。我们的结果表明,基于 ECoG 的 BCI 可以为严重运动障碍患者提供一种非肌肉通信和控制选项,这种选项比基于 EEG 的 BCI 更强大,并且比使用穿透大脑的电极的 BCI 更稳定、创伤更小。
自动脑电图 (EEG) 情绪识别是人机交互 (HCI) 中一个具有挑战性的组成部分。受近期出现的深度学习技术强大的特征学习能力的启发,各种先进的深度学习模型越来越多地被采用来学习用于脑电图情绪识别的高级特征表示。本文旨在提供脑电图情绪识别的最新和全面的概述,特别是针对该领域的各种深度学习技术。我们提供了文献中的准备工作和基础知识。我们简要回顾了脑电图情绪识别基准数据集。我们详细回顾了深度学习技术,包括深度信念网络、卷积神经网络和循环神经网络。我们详细描述了深度学习技术在脑电图情绪识别中的最新应用。我们分析了该领域的挑战和机遇,并指出了其未来的发展方向。
摘要:最近有研究表明,需要设计智能结构,例如智能房屋,以便以不同的方式进行控制。由于它对某些无法接触需要与人类直接交互的控制单元的人很有用,因此需求量很大。在本文中,我们提出并开发了一种新的基于增强型脑电图 (EEG) 的智能结构设置,可用于帮助有或无疾病的人以轻松舒适的方式控制设备。十个年龄范围广泛(20-65 岁)且男女不限的人积极参与了这项研究。因此,本研究采用了八个 EEG 通道来覆盖大脑的大部分区域,所采用的协议适用于残疾人和行动不便的人。为广泛的参与者找到标准或共同特征是一项挑战。为了缓解这种情况,使用重建独立成分分析 (RICA)(传统独立成分分析 (ICA) 的改进技术)来获得最佳特征。此外,所提出的改进型支持向量机 (SVM) 模型将选定的特征分为不同的类别,能够消除导致错误分类的高噪声和重叠。所识别的类别负责根据参与者状态启动智能房屋的执行器。使用 MATLAB 和嵌入式系统实时将多通道 EEG 数据分类为脑电波成分、结果可视化和设备控制。使用所提出的模型,类别之间只有一种重叠情况,而使用传统 SVM 则有 74 种重叠情况。因此,错误分类的结果达到零,所提出的模型能够基于脑电波控制智能房间,总体准确率达到 98%。随着未来的改进,所获得的研究结果将促使使用所建议的基于 EEG 的智能结构,这可能对不动的人有帮助。