专门为猫与狗数据集和与铁路相关的数据集。目标是解决公共和专业领域中复杂背景和多角度摄影所带来的挑战。剪辑 - 取回剪辑模型的图像编码器作为其核心体系结构,提取图像特征,并构建一个相似性矩阵,以与不同图像之间的相似性分数。基于排序的结果,它显示最相关的图像。为了验证剪辑 - 恢复的鲁棒性和稳定性,我们进行了比较研究和干扰抗性实验。实验结果显示出显着的进度改进,表明了出色的图像检索效果。具体来说,剪辑回程有效地处理复杂的背景和构成不同数据集的变化,从而提供准确有效的检索服务。
神经元产生电信号,通过突触传输到其他细胞。首先,动作电位 (AP) 到达突触间隙(图 1 中的步骤 1),在那里它将通过神经递质传输化学信息(图 1 中的步骤 2),从而产生突触后电位 (PSP) 和局部电流(图 1 中的步骤 3)。PSP 将产生电流接收器并传播直到细胞体以产生电流源(图 1 中的步骤 4)。因此,PSP 会产生一个由负极(即接收器)和正极(即源)组成的电偶极子。该偶极子将产生初级(细胞内)电流和次级(细胞外)电流。M/EEG 信号来自突触后电位。更具体地说,M/EEG 信号来自大量同步神经元活动的空间和时间总和。但 MEG 和 EEG 之间存在显著差异。首先,就信号本身而言,MEG 信号主要由树突水平的 PSP 产生的细胞内电流引起,细胞外电流较少;EEG 信号对应于电位差,主要由细胞外电流引起。其次,就对偶极子方向的敏感性而言,EEG 对径向电流(位于脑回水平的活动)和切向电流(在脑沟内产生)都很敏感,尽管它具有
由于 MEG 和脑电图 (EEG) 似乎是姊妹电生理技术,两者都对脑细胞内和脑细胞之间的电化学电流流动敏感,因此 MEG 有时被认为等同于 EEG,具有有限的科学附加价值。我们驳斥了这种误解,并解释了不同的物理原理如何使这两种模式在许多方面互补而不是纯粹是多余的。具体而言,我们认为 MEG 是直接和非侵入性访问整个大脑电生理活动的最佳组合,具有亚毫秒时间分辨率和分辨大脑区域之间活动的能力,通常具有令人惊讶的空间和光谱区分以及最小偏差。事实上,与 EEG 不同,MEG 源映射的准确性不受头部组织复杂分层引起的信号失真的影响,具有高度异质的电导率曲线,无法在体内精确测量。
自 20 世纪 90 年代末以来,视觉诱发场 (VEF) 已在临床实践中得到可靠应用。这是定制枕叶皮质手术切除术的标准临床工具。1 2011 年,美国临床脑磁图学会 (ACMEGS) 发布了临床实践指南 (CPG),详细介绍了自发性脑活动分析、使用诱发场进行术前功能性脑映射、脑磁图 (MEG) 报告以及 MEG 人员的资质。 2 – 5 最近,ACMEGS 发表了第二份立场声明,详细说明了 MEG 作为一种非侵入性诊断工具在术前映射功能皮质中的价值,并支持“在对准备手术的可手术病变患者进行术前评估时,MEG 可常规临床用于获取有关功能皮质(体感、运动、视觉、听觉和语言)的非侵入性定位或侧向信息。” 6 尽管映射功能皮质的“黄金标准”是通过直接皮质刺激,但 MEG 作为一种非侵入性诊断工具已证实其在识别这些区域方面的有效性。1 – 3,6 本文将重点介绍 MEG 在定位功能视觉皮层中的实用性。本文将首先概述 VEF 在临床实践中的当前临床作用。然后,将回顾 2011 年 ACMEGS CPG 发布后的最新研究和临床发展。最后,
1 光学科学中心和先进材料表面工程 (SEAM) ARC 培训中心,斯威本科技大学理学院,霍索恩,维多利亚州 3122,澳大利亚 2 墨尔本纳米制造中心,151 Wellington Road,Clayton,维多利亚州 3168,澳大利亚 3 斯威本科技大学健康科学学院、心理科学系,霍索恩,维多利亚州 3122,澳大利亚 4 光子学与纳米技术研究所,维尔纽斯大学物理学院,Saul˙etekio al. 3,LT-10257 维尔纽斯,立陶宛 5 拉筹伯大学心理科学学院,墨尔本,VIC 3086,澳大利亚 6 WRH 计划国际研究前沿倡议 (IRFI),东京工业大学,长津田町,绿区,横滨 226-8503,神奈川,日本 * 通讯地址:weerasuriya@gmail.com (CW);soonhockng@swin.edu.au (SHN);sjuodkazis@swin.edu.au (SJ)
患者数据记录室。 用于患者数据存储的 HP 服务器。 用于 MEG 采集室的 UPS 备份。 男女病房(每个病房 3 张床)均配备基本医疗设备。 专用计算机工作站,配备用于患者数据分析的软件。
脑磁图 (MEG) 是一种尖端的神经成像技术,它以无与伦比的高时间和空间精度组合测量认知过程背后的复杂大脑动态。MEG 数据分析始终依赖于先进的信号处理以及数学和统计工具来完成各种任务,从数据清理到探测信号的丰富动态,再到估计表面级记录背后的神经源。与大多数领域一样,人工智能 (AI) 的激增导致机器学习 (ML) 方法在 MEG 数据分类中的使用增加。最近,该领域的一个新兴趋势是使用人工神经网络 (ANN) 来解决许多与 MEG 相关的任务。本综述从三个角度全面概述了 ANN 如何用于 MEG 数据:首先,我们回顾了使用 ANN 进行 MEG 信号分类(即大脑解码)的工作。其次,我们报告了使用 ANN 作为人脑信息处理的假定模型的工作。最后,我们研究了使用 ANN 作为解决 MEG 方法问题(包括伪影校正和源估计)的技术的研究。此外,我们评估了目前在 MEG 中使用 ANN 的优势和局限性,并讨论了该领域未来的挑战和机遇。最后,通过详细描绘该领域并为未来提供实用建议,本综述旨在为经验丰富的 MEG 研究人员和对该领域有兴趣使用 ANN 来增强对 MEG 人脑复杂动态的探索的新手提供有益的参考。
(1) 维数 一般取值 1 或 2 ,当 时,要求数据量 在数千点以上,但 过大不能保证序列具有相同 的性质; 一定时,若 ,需要较大才能取得 较好的效果,但是太大会丢失序列的许多细节信 息。 Pincus [ 14 ] 研究认为 比 效果好,可使 序列的联合概率进行动态重构时提供更详细的信 息。 (2) 用来衡量时间序列相似性的大小。如果 选得太小,估计出的统计概率会不理想;若选得 太大,会丢失时间序列中很多细节,达不到预期的 效果。 Pincus [ 14 ] 通过对确定性和随机过程的理论分 析及其对计算和临床应用的研究,总结出取值为 ( 为原始序列的标准差 ) 能得出有效 的统计特征。 (3) 表示输入数据点,一般取值为 100 ~ 5000 。因此根据上述原则,本文取 , 。根据实验研究发现当 时,不同 状态的脑电信号的样本熵并无太大差异;当 时,不同状态的脑电信号的熵值有明显差异。 因此 取值为 100 。即用长度为 100 点,间隔为 4 点 的滑动窗计算 EEG 在运动想象期 (2 ~ 6 s) 的样本 熵序列,然后求该序列的均值作为该 EEG 的样本 熵。 ERS/ERD 现象主要出现在 C3 和 C4 电极对应的 感觉运动区上,例如,右手运动想象时可观测到 C3 电极对应的感觉运动区 ERD 现象,左手运动想 象时可观测到 C4 电极对应的感觉运动区 ERD 现
1 计算机科学与工程系,Mar Ephraem 工程技术学院,Marthandam 629171,泰米尔纳德邦,印度;leninfred@marephraem.edu.in(ALF);fredin.givo@yahoo.in(FASG) 2 电子电气工程系,Amal Jyothi 工程学院,Kanjirappally 686518,喀拉拉邦,印度;appu123kumar@gmail.com 3 电子与工程系,Mar Ephraem 工程技术学院,Marthandam 629171,泰米尔纳德邦,印度;ajay@marephraem.edu.in 4 综合生物学系,Vellore 理工学院,Vellore 632014,泰米尔纳德邦,印度;sayantan7@gmail.com 5 认知神经影像中心,南洋理工大学,新加坡 636921,新加坡; pbharishita@gmail.com (HPB); simw0035@e.ntu.edu.sg (WKJS); vimalan.vijay@ntu.edu.sg (VV); veikko.jousmaki@aalto.fi(VJ) 6 李光前医学院,南洋理工大学,新加坡 636921,新加坡 7 阿尔托神经影像学,神经科学和生物医学工程系,阿尔托大学,12200 埃斯波,芬兰 8 卡罗林斯卡学院临床神经科学系,17176 斯德哥尔摩,瑞典 *通讯作者: ppadmanabhan@ntu.edu.sg (PP); balazs.gulyas@ntu.edu.sg (BG)
在这个项目中,我们最初使用 MNE 样本数据集作为基础数据集。这些数据是使用 MGH/HMS/MIT Athi-noula A. Martinos 生物医学成像中心的 Neuromag Vectorview 系统收集的。EEG 数据是使用 60 通道电极帽与 MEG 同时采集的。原始 MRI 数据集是使用带有 MPRAGE 序列的西门子 1.5 T Sonata 扫描仪获得的。在实验期间,在受试者的左、右视野中呈现棋盘格图案,并穿插着向左耳或右耳发出的音调。刺激之间的间隔设置为 750 毫秒。此外,视野中心偶尔会出现一个笑脸,提示受试者在笑脸出现时尽快用右手食指按下按键。样本数据集包含两个主要目录:MEG/sample(包含 MEG/EEG 数据)和 subject/sample(包含 MRI 重建)。