经颅磁刺激(TMS)是一种非侵入性脑神经刺激技术,可以用作中风后神经恢复的辅助治疗技术之一。动物研究表明,用大脑中动脉闭塞(MCAO)模型对大鼠的TMS治疗减少了大脑梗塞的体积,并改善了模型大鼠的神经功能障碍。此外,临床病例报告还表明,TMS治疗在中风患者中具有阳性的神经保护作用,改善了各种冲程后神经功能缺陷,例如运动功能,吞咽,认知功能,语音功能,中枢后疼痛,痉挛,痉挛,痉挛和其他后造成后频段。然而,尽管许多研究表明TMS在中风患者中具有神经保护作用,但其神经保护机制也不清楚。因此,在本综述中,我们描述了TMS在神经发生,血管生成,抗炎,抗氧化剂和抗凋亡方面提高神经功能功能的潜在机制,并提供了TMS在Stroke中多神经学功能障碍中当前TMS临床应用的见解。最后,总结了TMS所面临的一些当前挑战,并提出了一些有关其未来研究方向的建议。
祖父母在遍布全球的儿童中起着至关重要的作用。然而,神经生物学研究缺乏研究祖父母与孙子之间的关系。我们采用多脑神经计算模型来模拟发育和健康衰老中神经生理过程的变化如何影响多代脑间脑耦合 - 一种与一系列社会疾病和认知能力相关的神经标记。模拟表明,祖父母与孩子之间的相互作用可能比亲子互动更高,这会提高前者在某些条件下可能更有利的可能性。至关重要的是,在三方互动中,祖父母与孩子相互作用的脑之间耦合的增强更为明显,这也包括父母,这可能表明,如果父母也是一个活跃的家庭成员,则祖父母参与育儿是最有益的。在一起,这些发现强调了对跨代相互作用的神经比逻辑基础的更好理解至关重要,并且这种知识可以帮助指导整个家庭的局限。我们主张在发展社会神经科学中采用社区神经科学方法,以捕捉现实环境中儿童保育员关系的多样性。
帕金森病 (PD) 是一种慢性进行性脑神经退行性疾病,与多巴胺能神经元的丢失有关。其发病机制尚不清楚;但活性氧 (ROS) 造成的氧化性 DNA 损伤被认为在 PD 的病因中起主要作用。DNA 修复系统可以减轻氧化性 DNA 损伤并有助于维持基因组稳定性,从而防止神经元死亡。然而,DNA 修复酶的基因多态性可能会改变酶的功能并增加 PD 的风险。本研究旨在调查土耳其人群中 97 名 PD 患者和 102 名对照者的 OGG1 、 XRCC1 和 MTH1 基因多态性与 PD 风险之间的可能联系。我们利用聚合酶链式反应-限制性片段长度多态性进行的基因分型研究表明,两个基因多态性( OGG1Ser326 Cys 和 MTH1Val83Met )与 PD 风险之间没有关系。携带 XRCC1 变异基因型的受试者罹患 PD 的风险比对照组高出 2 至 3.5 倍(分别为 p = 0.046,OR = 1.910,95 % CI= [1.013 – 3.603] 和 p = 0.006,OR = 3.742,95 % CI= [1.470 – 9.525])。我们的研究结果表明 XRCC1 Arg399Gln 多态性是 PD 的风险因素。
我们开发了一种用于 C. elegans 体积显微镜数据(静态或视频)的数据协调方法,包括标准化格式、数据预处理技术和一套基于人机交互机器学习的分析软件工具。我们将来自 5 个实验室的 118 个全脑神经活动成像数据集统一起来,将这些数据集和随附工具存储在一个名为 WormID (wormid.org) 的在线存储库中。我们使用此存储库生成统计图谱,该图谱首次实现了跨实验室的精确自动细胞识别,在某些情况下接近人类的表现。我们挖掘这个存储库以确定影响神经元发育定位的因素。为了方便大家使用这个存储库,我们创建了开源软件、代码、基于网络的工具和教程,以探索和管理数据集,为科学界做出贡献。该存储库为实验者、理论家和工具制造者提供了不断增长的资源,以研究不同实验范式中的神经解剖组织和神经活动,开发和基准测试自动神经元检测、分割、细胞识别、跟踪和活动提取的算法,并为神经生物学发育和功能模型提供信息。
性二态性,包括孕产妇护理,性行为,大脑功能,结构和对神经系统疾病的敏感性在人类和非人类物种中都很明显。对男性和女性大脑的研究揭示了连接组,甲基组和转录组专题纤维的性别差异(Ingalhalikar等,2014; Xu等,2014)。尽管神经科学方面有广泛的进步,但这些性别差异的分子调节仍不清楚。将性腺类固醇激素作为建立男性和女性神经网络的主要驱动因素的经典模型源自较早的研究(Phoenix等,1959; Arnold,2009)。该模型指出,染色体构成(XX或XY)决定性腺性别,性腺分泌的激素对脑神经网络的分泌有所不同(Phoenix等,1959; Arnold,2009)。性别差异的开始受到性别确定区域y(SRY)主调节基因的控制,该基因位于Y染色体上,这信号是激活男性性别分化途径和睾丸的形成(Koopman,2005)。SRY的最早的性腺表达在小鼠中约为E10.5,在E11.5处达到峰值以启动睾丸分化(Sim等,2008)。也已经观察到鼠标中存在SRY
2017 年 2 月 6 日,作为一名二年级医学生,我接受了第六次脑部手术,从此改变了我的生活。我以一个身份走进手术室,以另一个身份出来。虽然我对脑部手术并不陌生,但这次不同。我接受了一项实验性脑部手术,以解开我的脑干,脑干与硬脑膜相连,并且扭曲,因此拉动周围的一些脑神经。正因为如此,我的手臂无力,感觉减弱,精细运动协调性下降,自主神经功能紊乱,我失去了吞咽能力。我的身体状况正在恶化。在查阅文献后,我的神经外科医生发现只有少数患者接受了这种手术,而且大多数病例的结果都不好。尽管我处于不利地位,但我还是同意了这项冒险的手术,希望能恢复我的生命。当我从手术中醒来时,医生和我很快意识到有些不对劲。虽然手术很成功,但我在手术过程中颈椎脊髓交界处中风,导致我颈部以下无法活动。我无法独自坐起,无法在床上翻身,无法行走,无法洗澡或穿衣。我所能做的就是躺在床上。我再次感到成为一名医生的梦想破灭了,但我从未让健康阻碍我继续我的旅程,现在我也不会让它开始。
临床护理是护理教育中最重要的方面。早期接触临床实践可能对护理学生有益,从而更深入地理解现实生活中的护理。但是,这种经历可能会引起可能对所涉及的重要责任做好准备的学生的压力。为了确保学生在获得提供高质量护理的临床知识和技能方面发挥最大的潜力,临床讲师必须认真反映他们的教学方法。纳入创新的教学方法对于积极吸引学生并灌输床边临床护理期间的挑战和动机感至关重要。要使护理学生积极参与临床学习,教师需要将脑神经递质连接起来,以寻求学习。在学习过程中,没有足够的刺激大脑及其神经递质和激素的刺激,学生可能很难长期掌握和保留知识。本文献评论强调了在临床教育中使用基于大脑的方法来满足Z世代学生需求的重要意义。拥抱基于大脑的方法可能会导致护理教育和临床实践的革命性变化。通过关联大脑的生理学和利用先进的学习过程,临床讲师可以熟练地培养以患者为中心的,至关重要的,有练习的护士。
人工智能的发展目标之一就是将人工智能深深扎根于基础科学,同时发展以脑为启发的人工智能平台,推动新的科学发现。这些挑战对于推动人工智能理论和应用技术的研究至关重要。本文提出了未来20年人工智能研究面临的重大挑战,包括:(i)在理解脑科学、神经科学、认知科学、心理学和数据科学的基础上,探索人脑的工作机制;(ii)人脑的电信号是如何传输的?脑神经电信号与人体活动的协调机制是什么?(iii)将脑机接口(BCI)和脑肌肉接口(BMI)技术深深扎根于对人类行为的科学研究; (iv)研究知识驱动的视觉常识推理(VCR),发展新型认知网络识别推理引擎(CNR);(v)发展高精度、多模态智能感知器;(vi)研究基于知识图谱(KG)的智能推理与快速决策系统。我们认为,人工智能前沿理论创新、知识驱动的常识推理建模方法、人工智能新算法和新技术的革命性创新与突破、发展负责任的人工智能应成为未来人工智能科学家的主要研究策略。关键词:类脑人工智能;脑机接口;认知科学;常识推理;知识图谱驱动推理;负责任的人工智能。
单脑神经成像研究表明,人类合作与额叶和颞顶叶区域的神经活动有关。然而,单脑研究是否能为现实生活中的合作提供信息仍不清楚,因为在现实生活中,人们会进行动态互动。这种动态互动已成为脑间研究的焦点。在这方面,一种有利的技术是功能性近红外光谱 (fNIRS),因为它比 EEG 或 fMRI 等更传统的技术更不容易受到运动伪影的影响。我们基于 13 项研究(涉及 890 名参与者),对 fNIRS 合作超扫描进行了系统评价和首次定量荟萃分析。总体而言,荟萃分析揭示了人们合作时存在统计学上显着的脑间同步性的证据,额叶和颞顶叶区域的整体效应大小都很大。所有 13 项研究都观察到前额叶皮层 (PFC) 中存在显着的脑间同步性,这表明该区域与合作行为特别相关。由于相关研究使用了不同的合作任务,因此这些发现的一致性不太可能归因于与任务相关的激活。总之,本研究结果支持了额叶和颞顶叶区域在人际合作中的大脑间同步的重要性。此外,本文强调了元分析作为辨别大脑间动态模式的工具的实用性。关键词:大脑间同步、人际神经对齐、超扫描、合作、fNIRS
经颅超声刺激(TUS)已成为一种无创神经调节的有前途的技术,但是当前系统缺乏有效靶向深脑结构的精确性。在这里,我们引入了一个先进的TUS系统,该系统在深脑神经调节中实现了前所未有的精度。该系统具有256个元素,头盔形的换能器阵列在555 kHz下运行,并与立体定位系统,个性化的治疗计划以及使用功能性MRI进行实时监控。在一系列实验中,我们证明了系统在视觉皮层中选择性调节侧向元素核(LGN)及其功能连接区域的活性的能力。参与者在同时进行的TU和视觉刺激期间表现出显着增加的视觉皮层活性,并且在各个个体之间具有很高的可重复性。此外,theta-burst Tus方案诱导了鲁棒的神经调节作用,刺激后至少40分钟观察到视觉皮层活性降低。通过对照实验证实,这些神经调节作用是针对靶向LGN的特异性的。我们的发现突出了这种先进的TUS系统对以高精度和特异性调节深脑回路的潜力,为研究脑功能和开发针对神经系统和精神疾病的靶向疗法提供了新的途径。前所未有的空间分辨率和延长的神经调节作用证明了该技术在研究和临床应用中的变革潜力,为非侵入性深层大脑神经调节的新时代铺平了道路。