背景 - 已经开发出多种人体体外方法,人们对这些研究解决与临床(人体)药物使用和肿瘤病理生物学相关的问题的潜力非常感兴趣。这需要就如何评估现有证据的强度(即质量和数量)和此类研究的人类相关性达成一致。SAToRI-BTR(脑肿瘤研究体外方法的系统方法审查)项目旨在确定相关的评估标准,以帮助使用体外方法规划和/或评估脑肿瘤研究。目标 - 确定评估体外脑肿瘤研究质量和人类相关性的标准;评估此类标准对该领域工作的高级科学家的普遍接受度。方法 - 第一阶段涉及通过以下方式确定评估体外研究的潜在标准:(1)对脑肿瘤研究人员进行国际调查;(2)采访科学家、临床医生、监管者和期刊编辑;(3)分析相关报告、文件和已发表的研究。通过对研究结果进行内容分析,制定了脑肿瘤体外研究质量评估的初步标准清单。第二阶段由专家小组(德尔菲法)审查标准。结果 - 第一阶段的结果表明,体外研究的审查方法和质量差异很大,需要改进报告标准。确定了 129 项初步标准;删除了重复和高度特定于上下文的项目,最终有 48 项标准供专家(德尔菲法)小组审查。37 项标准达成一致,从而形成脑肿瘤研究体外研究评估的临时清单。结论 - 通过系统地整理评估标准并对其进行专家审查,SAToRI-BTR 已为体外脑肿瘤研究评估提供了初步指导。计划进一步制定该指导,包括研究适应和传播脑肿瘤研究不同子领域以及更广泛的体外领域的策略。
摘要 - RSNA-MICCAI 脑肿瘤放射基因组学分类挑战赛[1]旨在通过对多参数 mpMRI 扫描(T1w、T1wCE、T2w 和 FLAIR)进行二元分类来预测胶质母细胞瘤中的 MGMT 生物标志物[2]状态。数据集分为三个主要队列:训练集、验证集(在训练期间使用),测试集仅在最终评估中使用。图像要么是 DICOM 格式[3],要么是 png 格式[4]。使用不同的架构来研究该问题,包括 3D 版本的 Vision Transformer (ViT3D)[5]、ResNet50[6]、Xception[7] 和 EfficientNet-b3[8]。AUC 被用作主要评估指标,结果显示 ViT3D 和 Xception 模型都具有优势,在测试集上分别达到 0.6015 和 0.61745。与其他结果相比,考虑到任务的复杂性,我们的结果被证明是有效的。通过探索不同的策略、不同的架构和更多样化的数据集可以取得进一步的改进。
图2。平面和Triplanar网络的想法。(a)将轴向平面网络从轴向图像进行训练的CA,CCSA和SCSA网络的分割结果组合在一起以产生结果。同样,我们可以创建冠状合奏和矢状 - 合奏。(b)Triplanar网络的概述,在该网络中,从轴向,冠状图像和矢状图像中训练的单个注意网络(例如,CA网络)产生的分段结果合并为生成结果。通过在三个正交平面训练的CCSA和SCSA注意网络中生成类似的分段结果。
脑肿瘤的特征是脑组织异常生长,因其对全球发病率和死亡率的影响而成为一项重大的医学挑战。脑肿瘤有多种表现形式,从良性到恶性,后者尤其具有侵袭性且易于转移 (1)。脑肿瘤的病因复杂,包括放射线暴露、遗传易感性和家族史等因素,因此需要早期发现和准确诊断 (2)。在脑肿瘤诊断领域,磁共振成像 (MRI) 因其更高的空间分辨率和软组织对比度而成为优于计算机断层扫描 (CT) 的检查方式。这使得 MRI 成为脑肿瘤病例术前评估、治疗管理和生存预测所必需的 (3)。然而,MRI 扫描中传统的手动分割方法虽然是黄金标准,但却存在固有的效率低下和主观差异性,因此有必要探索自动化技术 (4、5)。近年来,深度学习模型(例如 Ma 等人提出的模型)在自动脑肿瘤分割方面取得了重大成功。这些模型擅长捕捉局部和全局上下文特征,但通常会遇到梯度消失和过拟合的问题,尤其是在较深的网络层中。Kumar 等人(7)通过将 ResNet50 与全局平均池化相结合来解决这些问题,以增强各种肿瘤类型的肿瘤分类。在此基础上,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。
我保证,据我所知,我的论文不侵犯任何人的版权,也不违反任何专有权利,并且我的论文中包含的任何想法、技术、引用或来自他人作品的任何其他材料(无论是否已发表)均已根据标准引用惯例完全承认。此外,如果我所包含的受版权保护的材料超出了《印度版权法》所规定的公平使用范围,我保证我已获得版权所有者的书面许可,可以将此类材料纳入我的论文中,并将此类版权许可的副本附在我们的附录中。
放射治疗 - USL / IRCCS公司神经科学研究所,博洛尼亚放射疗法肿瘤学,大学和平民观点,布雷西亚图像诊断,坎帕尼亚大学,坎巴尼亚大学,“ luigi vanvitelli”,napania naples naples naples naples naples naples naples naples naples n irccs HospitA神经元学E神经炎症,IRCCS Mondino基金会,帕维亚放射学,肿瘤学和解剖学科学系,萨皮恩扎罗马大学诊断和公共卫生系,维罗纳大学肿瘤学系,海洋医院,NAAPLES NAPLES IRCCINITION IRCRANAGICS IRAGICAL INTROGIAL STICITITION BALOGINAL STICITION IRAGICS IRLOGIAL STICITION STICITION STICITISTIC肿瘤学,肿瘤学,肿瘤学。 1,Oncolo-GICICO VENETO IOV-IRCCS,PADUA MAURIZIO MASCARIN(放射治疗师)Maura Massimino(儿科医生)
● 校园里有多少残疾学生?有多少人已经毕业? ● 该计划的目标和目的是什么? ● 你们的导师是否使用过残疾人办公室? ● 提供哪些服务?服务是否单独收费? ● 如何确定服务期限?是一个学期?一年?两年还是更长? ● 服务提供者接受过哪些残疾方面的专门培训? ● 安排学术住宿需要哪些残疾记录或文件?记录必须是多近的? ● 学校是否会提供我(学生)需要的特定住宿? ● 是否有残疾学生无法选择的课程? ● 是否有残疾学生必须参加的课程? ● 我(学生)可以在第一年或第二年修读少于全部课程的课程吗? ● 残疾学生可以每学期先注册吗? ● 辅导和/或咨询是一对一还是以小组形式提供的? ● 是否有支持小组? ● 教师或管理人员愿意为残疾学生做出哪些修改? ● 你们为视力受损的人提供哪些便利?为听力受损的人提供哪些便利?● 我需要一对一的助手。这所学校提供这种服务吗?
由于带注释的样本稀缺,病理性脑损伤在图像数据中的复杂表现对监督检测方法提出了挑战。为了克服这个困难,我们将重点转移到无监督异常检测。在这项工作中,我们专门使用健康数据训练所提出的模型,以识别测试期间未见的异常。这项研究需要调查基于三元组的变分自动编码器,以同时学习健康脑数据的分布和去噪能力。重要的是,我们纠正了先前基于投影的方法中固有的一个误解,该误解依赖于这样的假设:图像内的健康区域在重建输出中将保持不变。这无意中暗示了病变图像和无病变图像在潜在空间表示上存在相当大的相似性。然而,这种假设可能并不成立,特别是由于病变区域强度对投影过程的潜在重大影响,特别是对于具有单一信息瓶颈的自动编码器。为了克服这个限制,我们将度量学习与潜在采样分离。这种方法确保病变和无病变输入图像都投影到相同的分布中,特别是无病变投影。此外,我们引入了一个语义引导的门控交叉跳过模块来增强空间细节检索,同时抑制异常,利用解码器更深层中存在的健壮健康大脑表示语义。我们还发现,将结构相似性指数测量作为额外的训练目标可以增强所提模型的异常检测能力。
摘要:本文讨论了一种针对脑肿瘤的医学图像分割改进模型,该模型是一种基于U-Net架构的深度学习算法。在传统U-Net基础上,引入GSConv模块和ECA注意力机制,提升模型在医学图像分割任务中的表现。通过这些改进,新的U-Net模型能够更高效地提取和利用多尺度特征,同时灵活地聚焦重要通道,从而显著提高分割效果。在实验过程中,对改进的U-Net模型进行了系统的训练和评估。通过观察训练集和测试集的loss曲线,我们发现两者的loss值在第8个epoch之后迅速下降到最低点,随后逐渐收敛并趋于稳定。这表明我们的模型具有良好的学习能力和泛化能力。此外,通过监测平均交集比(mIoU)的变化,我们可以看到在第35个epoch之后,mIoU逐渐趋近于0.8并且保持稳定,这进一步验证了模型的有效性。与传统U-Net相比,基于GSConv模块和ECA注意机制的改进版本在分割效果上表现出明显的优势,特别是在脑肿瘤图像边缘的处理上,改进模型能够提供更为准确的分割结果,这一成果不仅提高了医学图像分析的准确率,也为临床诊断提供了更可靠的技术支持。综上所述,本文提出的基于GSConv模块和ECA注意机制的改进U-Net模型为脑肿瘤医学图像分割提供了一种新的解决方案,其优越的性能有助于提高疾病的检测和治疗效果,在相关领域具有重要的意义。未来希望进一步挖掘该方法在其他类型医学图像处理中的应用潜力,推动医学影像事业的发展。
摘要背景:磁共振(MR)图像是脑肿瘤检测最重要的诊断工具之一。在医学图像处理问题中,脑 MR 图像中胶质瘤肿瘤区域的分割具有挑战性。精确可靠的分割算法对诊断和治疗计划有很大帮助。方法:本文介绍了一种新颖的脑肿瘤分割方法作为后分割模块,该方法使用主要分割方法的输出作为输入,并使分割性能值更好。该方法是模糊逻辑和细胞自动机(CA)的组合。结果:BraTS 在线数据集已用于实现所提出的方法。在第一步中,将每个像素的强度输入模糊系统以标记每个像素,在第二步中,将每个像素的标签输入模糊 CA 以使分割性能更好。在性能饱和时重复此步骤。第一步的准确率为 85.8%,但使用模糊 CA 后的分割准确率达到 99.8%。结论:实际结果表明,与其他方法相比,我们提出的方法可以显著改善 MRI 图像中的脑肿瘤分割。
