卤代有机化合物在工业和农业中的广泛使用对环境和公共健康构成了重大挑战。这些化合物具有毒性、疏水性和抗降解性,会在土壤和地下水中积累,导致长期污染(Ackerman Grunfeld 等,2024;He 等,2021)。有机卤化物呼吸细菌(OHRB),包括脱卤球菌、脱卤单胞菌和脱卤杆菌,在不同环境中对这些污染物的转化起着关键作用(Matturro 等,2017;Qiu 等,2020;Xu 等,2024)。然而,卤代有机污染物的微生物降解有时效率低下。降解率通常较低,在某些情况下,这些微生物转化会产生更多有毒副产物(Ding 等,2013)。为了应对这些挑战,需要创新策略来调节和增强 OHRB 的代谢活性,从而加速卤代有机污染物的降解。本研究主题精选了一系列前沿研究,为微生物脱卤过程、与功能材料的相互作用以及环境修复的综合方法提供了见解。通过汇集该领域的六项最新研究,我们希望促进对更有效地降解和修复有机卤化物污染物的综合方法的理解和应用。
能量转化为化学能。[1] 后者尤其因碳氮化物光催化水分解的演示而加速。[2] 从那时起,人们开发出了许多不同的聚合物半导体,包括石墨烯类似物、共价有机框架或共轭梯形聚合物。[3,4] 通过控制 π 共轭的空间延伸、结构化、杂原子的类型和含量以及/或缺陷,可以调整它们的最终性质。扩展 π 共轭体系的合成,尤其是模型碳材料,通常需要高温,导致缺乏对结构的合理化学控制。因此,有必要寻找新的共轭碳质材料途径,避免恶劣条件,从而更好地控制所得结构。温和条件下的合成需要新的概念,例如新的单体或智能缩合-芳香化途径。这可以为更好地设计共价半导体提供必要的工具。一个很好的例子是 Müllen 和 Feng 合成的石墨烯纳米带。[5–7] 他们利用脱卤-环脱氢反应或狄尔斯-阿尔德反应
摘要:定向进化通过迭代诱变促进酶工程。尽管高通量筛选应用广泛,但构建“智能库”以有效识别有益变体仍然是该社区面临的主要挑战。在这里,我们基于 EnzyHTP 开发了一种新的计算定向进化协议,EnzyHTP 是我们之前报道过的用于自动化酶建模的软件。为了提高吞吐效率,我们实施了一种自适应资源分配策略,该策略根据工作流中酶建模子任务的特定需求动态分配不同类型的计算资源(例如 GPU/CPU)。我们将该策略实现为 Python 库,并使用氟乙酸脱卤酶作为模型酶测试了该库。结果表明,与在整个工作流中 CPU 和 GPU 都随时可用的固定资源分配相比,应用自适应资源分配可以节省 87% 的 CPU 小时数和 14% 的 GPU 小时数。此外,我们在自适应资源分配框架下构建了一个计算定向进化协议。该工作流程在 Kemp 消除酶定向进化实验中针对两轮突变筛选进行了测试,总共有 184 个突变体。使用折叠稳定性和静电稳定能作为计算读数,我们重现了四个实验观察到的目标变体中的三个。借助该工作流程,整个计算任务(即 18.4 μs MD 和 18,400 QM 单点计算)在三天内使用约 30 个 GPU 和约 1000 个 CPU 完成。
摘要:光氧化还原催化通常依赖于单个发色团的使用,而将两种不同的光吸收剂结合起来的策略很少见。在绿色植物的光系统 I 和 II 中,两个独立的发色团 P 680 和 P 700 都独立地吸收光,然后它们的激发能量以所谓的 Z 方案结合,从而驱动一个热力学上非常苛刻的整体反应。在这里,我们采用这一概念对有机底物进行光氧化还原反应,其中组合能量输入是两个红光子而不是蓝光或紫外光。具体而言,在过量二异丙基乙胺存在下,Cu I 双(α-二亚胺)复合物与原位形成的 9,10-二氰基蒽基自由基阴离子结合可催化约 50 个脱卤和脱甲磺酰反应。这种双光氧化还原方法似乎很有用,因为红光的破坏性较小,而且穿透深度比蓝光或紫外线辐射更大。紫外-可见瞬态吸收光谱表明,溶剂从乙腈到丙酮的细微变化会引起反应机制的转变,涉及占主导地位的光诱导电子转移或占主导地位的三重态-三重态能量转移途径。我们的研究说明了在多光子激发条件下运行的系统的机械复杂性,并提供了有关如何使所需和不需要的反应步骤之间的竞争变得更可控的见解。关键词:光催化、光谱、机械分析、电子转移、能量转移■简介
DOI:http://dx.medra.org/10.17374/targets.2020.23.92 Ana G. Neo 生物有机化学和膜生物物理实验室 (LOBO),有机和无机化学系,埃斯特雷马杜拉大学,10003 卡塞雷斯,西班牙(电子邮件:aneo@unex.es) 摘要。光化学环化允许获得多种类型的杂环和成分,成为合成有机化学的有力工具。在这种类型的过程中,光诱导周环闭合反应生成中间体,该中间体以不同的方式演变成稳定的最终产物。光环化发生在非常温和和简单的反应条件下,具有很好的原子经济性,并且对环境非常尊重。目录 1. 简介 2. 氧化条件下的光化学环化 2.1. 用于合成具有生物特性的分子 2.2。新材料设计中的应用 3. 碱存在下的光化学环化 3.1. 用于合成具有生物特性的分子 3.2. 新材料设计中的应用 4. 环化/脱卤及相关 5. 杂项 6. 结论 致谢 参考文献 1. 简介 约瑟夫·普里斯特利 (Joseph Priestley, 1733-1804) 对硝酸中阳光效应的研究和对光合作用原理的发现被认为是光化学的开端。在有机化学领域,光化学时代是由坎尼扎罗 (Cannizzaro) 对光对山托宁的影响的研究开创的,而 Giacomo Ciamician 和 Paul Silber 基本上是对光对有机化合物影响的完整和创新研究。在这些先驱之后,其他研究人员,如 Emanuele Paternò、Otto Schenck、Julius Schmidt 或 Alexander Schönberg,也将注意力集中在研究光对分子反应性的影响上。 1,2 早期的光化学研究主要研究太阳光对分子反应性的作用,因为当时人们还不知道光的性质及其在原子水平上的影响。目前,人们了解到,分子吸收紫外-可见光会将电子从基态转移到激发态,随后这些电子重新分布,从而形成在热条件下无法获得的产品。此外,光反应还具有其他吸引人的特性,如原子效率高、环境友好、功能组和杂原子耐受性范围广、反应非常简单,而且通常成本低廉。3-6 所有这些特性使得光化学反应在有机化学各个领域的各种分子合成中发挥着重要作用。7-13 在众多类型的光化学反应中,光诱导的周环闭合反应,尤其是6π-光环化反应是其中最重要的一种。这种类型的反应允许在单一且绿色的工艺中构建芳香族和杂芳族多环化合物。14 通常,6π-光环化反应分为氧化、消除和重排。本综述按照以下分类进行组织:首先,它们将展示一些氧化条件下的光环化例子以及您在合成具有生物活性的化合物和材料中的应用。第二部分是关于碱性介质中的光环化和