摘要高级钢的参数受到包括化学成分和生产技术在内的因素组合的影响。杂质含量也是高级钢质质量的关键决定因素。夹杂物也可能发挥重要作用,但要遵守其类型和形状。夹杂物可能通过抑制微裂缝的发展来增加钢的强度。分析的材料是中碳结构钢的一年级。该研究是在140吨电炉的工业工厂中产生的6次热量进行的。鉴于五种热处理选择,比较了实验变体。提出了结果,以说明旋转弯曲期间疲劳强度系数,杂质之间的直径和间距之间的相关性。确定了高级钢与杂质直径的疲劳强度与硬度与杂质之间的间距之间的关系。所提出的方程式有助于实践的现有知识基础,其杂质的影响以及各种直径的杂质和非金属包容性之间的间距对疲劳强度。
本文由 Jefferson Digital Commons 免费提供给您,供您开放访问。Jefferson Digital Commons 是托马斯·杰斐逊大学教学与学习中心 (CTL) 的一项服务。Commons 是杰斐逊书籍和期刊、同行评审的学术出版物、大学档案馆的独特历史收藏和教学工具的展示平台。Jefferson Digital Commons 让世界各地的研究人员和感兴趣的读者了解和掌握杰斐逊奖学金的最新进展。本文已被 Jefferson Digital Commons 的授权管理员接受,将收录在药理学和实验治疗学系教师论文中。如需更多信息,请联系:JeffersonDigitalCommons@jefferson.edu。
C末端结合蛋白(CTBP)是对癌症和炎症重要的保守转录阻遏物。 在转录共同调节剂中独特的CTBP具有功能性脱氢酶结构域。 由于多种恶性肿瘤显示CTBP水平升高,因此已经开发了针对该脱氢酶结构域的CTBP抑制剂。 尽管CTBPS脱氢酶功能对转录调节的重要性尚不清楚,但几项研究取决于CTBP抑制剂。 体外实验已经证实了这些化合物与CTBP活性位点的结合,但是缺乏特异性的证据。 为了解决这个问题,我们用MTOB或4-CL-HIPP处理了WildType和CTBP1,2个双基因敲除J774.1细胞并进行了RNA-Seq。 我们观察到,两种抑制剂都会引起不同的转录变化,表明非重叠的作用方式。 此外,在CTBP1/2双基因敲除细胞中观察到了任何一种抑制剂引起的大多数变化,提示靶向效应。 我们假设那些CTBP脱氢酶抑制剂对CTBPs缺乏特异性,并强调使用这些抑制剂从研究中推断出的发现进行仔细的重估。C末端结合蛋白(CTBP)是对癌症和炎症重要的保守转录阻遏物。在转录共同调节剂中独特的CTBP具有功能性脱氢酶结构域。由于多种恶性肿瘤显示CTBP水平升高,因此已经开发了针对该脱氢酶结构域的CTBP抑制剂。尽管CTBPS脱氢酶功能对转录调节的重要性尚不清楚,但几项研究取决于CTBP抑制剂。体外实验已经证实了这些化合物与CTBP活性位点的结合,但是缺乏特异性的证据。为了解决这个问题,我们用MTOB或4-CL-HIPP处理了WildType和CTBP1,2个双基因敲除J774.1细胞并进行了RNA-Seq。我们观察到,两种抑制剂都会引起不同的转录变化,表明非重叠的作用方式。此外,在CTBP1/2双基因敲除细胞中观察到了任何一种抑制剂引起的大多数变化,提示靶向效应。我们假设那些CTBP脱氢酶抑制剂对CTBPs缺乏特异性,并强调使用这些抑制剂从研究中推断出的发现进行仔细的重估。
正在流行的严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2),又称为 2019 冠状病毒病 (COVID-19),已导致全球超过 1300 万人感染,超过 56 万例死亡 ( https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports ),对全球公共卫生和经济构成重大威胁。目前,尚无有效的抗病毒药物和疫苗被批准用于预防或治疗 COVID-19。人们为开发针对 SARS-CoV-2 的药物和疫苗做出了巨大努力。主蛋白酶(Mpro,也称为3CLpro)是冠状病毒中一个很有吸引力的药物靶点,目前已报道了几种强效的 SARS-CoV-2 3CLpro 抑制剂及其与蛋白酶复合的晶体结构(Dai et al., 2020 ; Jin et al., 2020 ; Zhang et al., 2020 )。虽然病毒 RNA 依赖性 RNA 聚合酶(RdRp)是众所周知的广谱抗病毒药物靶点,但 SARS-CoV-2 RdRp 及其与吉利德科学公司开发的一种有前途的抗病毒候选药物瑞德西韦的复合物的低温电子显微镜结构验证了瑞德西韦对病毒 RNA 复制的有效抑制,并为抗击 SARS-CoV-2 感染的药物设计提供了合理的模板(Gao et al., 2020; Wang et al., 2020; Yin et al., 2020)。此外,SARS-CoV-2 表面的三聚体刺突蛋白通过与宿主细胞受体血管紧张素转换酶 2(ACE2)的肽酶结构域结合,在病毒进入过程中起关键作用(Yan et al., 2020)。研究表明,不仅 ACE2 识别的受体结合域,而且 SARS-CoV-2 刺突蛋白的 N 端域也是治疗性单克隆抗体的靶位 (Chi et al., 2020 )。因此,3CLpro 或 RdRp 的抑制剂和针对刺突蛋白的抗体均为开发用于治疗 COVID-19 的直接抗病毒 (DAA) 药物提供了潜在候选药物。
2。Gramer G,Haege G,Fang-Hoffmann J等。中链酰基-COA脱氢酶缺乏症:通过新生儿筛查检测到的患者的基因型 - 表型相关性的评估。
肿瘤细胞的能量代谢被认为是癌症的标志之一,因为它不同于正常细胞,主要包括有氧糖酵解、脂肪酸氧化和谷氨酰胺分解。大约一百年前,瓦尔堡观察到癌细胞即使在常氧条件下也喜欢有氧糖酵解,这有利于它们的高增殖率。驱动这一现象的关键酶是乳酸脱氢酶 (LDH),本综述描述了与这种酶相关的预后和治疗机会,重点关注治疗策略和预期寿命有限的肿瘤(即胰腺癌和胸腔癌)。胰腺癌组织中 LDH-A 的表达水平与临床病理特征相关:LDH-A 在胰腺癌发生过程中过表达,在更具侵袭性的肿瘤中表现出明显更高的表达。同样,LDH 水平是腺癌或鳞状细胞肺癌患者以及恶性胸膜间皮瘤患者预后不良的标志。此外,血清 LDH 水平可能在这些疾病的临床管理中发挥关键作用,因为它们与肿瘤负荷引起的组织损伤有关。最后,我们讨论了以 LDH 为治疗策略的有希望的结果,报告了最近的临床前和转化研究,支持将 LDH 抑制剂与当前/新型化疗药物联合使用,这些化疗药物可以协同靶向肿瘤中存在的含氧细胞。
常见的肝脏组织损伤主要是由于氧化应激下脂质过氧化过程中毒性醛类物质的积累所致,肝脏中积累的毒性醛类物质可被乙醛脱氢酶2(ALDH2)有效代谢,从而缓解多种肝脏疾病。值得注意的是,ALDH2基因突变导致ALDH2酶活性受损,从而加剧肝脏疾病的进展。但ALDH2与肝脏疾病的关系及具体机制尚不明确。因此,本文就ALDH2与酒精性肝病(ALD)、非酒精性脂肪性肝病(NAFLD)、肝纤维化、肝细胞癌(HCC)等肝脏疾病的关系进行综述,并探讨ALDH2作为多种肝脏疾病的潜在治疗靶点,并重点总结ALDH2在这些肝脏疾病中的调控机制。
摘要:肥胖会影响人口的越来越多,是2型糖尿病和心血管疾病的危险因素。即使在没有高血压和冠状动脉疾病的情况下,2型糖尿病也可能导致心脏病称为糖尿病心肌病。减少了葡萄糖氧化,对能量产生的脂肪酸氧化的依赖增加,并且氧化应激被认为起因果作用。但是,这些变化影响心脏的代谢变化和机制的进展尚未建立。心脏丙酮酸脱氢酶(PDH)是葡萄糖氧化的中心调节部位,在喂养高饮食脂肪的小鼠中迅速抑制肥胖和糖尿病模型。 增加对脂肪酸氧化作用产生的依赖性又增强了线粒体促氧化剂的产生。 抑制PDH可能会引起代谢不足和氧化应激,并导致糖尿病心肌病。 我们讨论了文献中的证据,这些证据支持PDH抑制在肥胖和糖尿病人类以及啮齿动物模型中能量稳态和舒张功能损失中的作用。 最后,看似矛盾的发现突出了疾病的复杂性以及描述心脏代谢的渐进性变化的需求,对心肌结构和功能的影响以及融合的能力。心脏丙酮酸脱氢酶(PDH)是葡萄糖氧化的中心调节部位,在喂养高饮食脂肪的小鼠中迅速抑制肥胖和糖尿病模型。增加对脂肪酸氧化作用产生的依赖性又增强了线粒体促氧化剂的产生。抑制PDH可能会引起代谢不足和氧化应激,并导致糖尿病心肌病。我们讨论了文献中的证据,这些证据支持PDH抑制在肥胖和糖尿病人类以及啮齿动物模型中能量稳态和舒张功能损失中的作用。最后,看似矛盾的发现突出了疾病的复杂性以及描述心脏代谢的渐进性变化的需求,对心肌结构和功能的影响以及融合的能力。
印度经济的核心是农业,它为印度农村人口提供了大部分收入。随着印度和其他国家的增加,食物的需求呈指数增长。根据对预期的世界人口和食品需求的荟萃分析,在2010年至2050年之间,粮食消费量分别增加 +0%至 +20%和 +35%,至 +56%[1]。为了跟上世界人口的扩大,农业生产的大幅增加是必要的。由于市场需求和生产损失的转变,农业部门也面临许多困难和不确定性。尽管预测气候变化的能力得到了改善,但仍需要更多的技术整合才能做出明智的决策。用传统农业技术生产的农作物将无法满足未来的需求。为了提高生产力,农业部门应在每个阶段进行有条理的改革并整合技术,从种子选择到供需预测。可以通过将技术与农业相结合并自动化流程来确保未来的粮食安全。机器学习(ML)有可能帮助农业行业克服它的问题[2]。为了提高农作物生产率,预测植物性疾病并满足消费者需求,正在进行研究以利用机器学习和以数据为中心的农业策略[3]。
11 de dez。 de 2024 - 此外,使用IPSC作为起始材料,可以直接引入遗传修饰,以进一步优化iMac细胞产品...11 de dez。de 2024 - 此外,使用IPSC作为起始材料,可以直接引入遗传修饰,以进一步优化iMac细胞产品...