摘要。In order to explore the effects of different remediation methods on the degradation rate of total petroleum hydrocarbons and enzyme activity in oil-contaminated soil, a study was conducted using six different treatments, including adding rhamnolipid (S), organic fertilizer (F), degradation bacteria (J), rhamnolipid + degrading bacteria (SJ), organic fertilizer + rhamnolipid(SF)和有机肥料 +降解细菌(FJ),以补充油污染的土壤。该研究检查了在不同的培养时间,研究了总石油烃的降解速率的变化以及四种土壤酶(尿素酶,过氧化物酶,脱氢酶和脂肪酶)的活性。结果表明,在修复60天后,所有处理都提高了被污染的土壤中总石油烃的降解率。通过FJ处理获得了最佳结果,降解率为31.72%。所有治疗中的酶活性都显着高于不同培养期间对照的酶活性。统计分析表明,尿素酶,过氧化物酶和脂肪酶的活性与受污染的土壤中总石油烃的残留率显着负相关。脱氢酶的活性与被污染的土壤中总石油烃的残留率高度显着相关。关键词:总石油烃,尿素酶,脱氢酶,过氧化物酶,脂肪酶
1。肺病学和植物学系查尔斯大学,皮尔森医学院,捷克共和国皮尔森的皮尔森大学医院,皮尔森大学医院。 2。 实体瘤应用基因组学中心,Genomac Research Institute,Drnovská1112/60,布拉格,捷克共和国。 3。 埃尔菲格尼,德尔诺夫斯卡1112/60,布拉格,捷克共和国。 4。 Charles University,Charles University,Hlavova 2030/8,捷克共和国布拉格的分析化学系。 5。 癌症治疗和组织再生实验室,生物医学中心,医学院,比尔森,查尔斯大学,Alej Svobody 76,捷克共和国皮尔森。 6。 成像系,位于捷克共和国皮尔森的查尔斯大学比尔森的医学院和大学医院。 7。 肿瘤学系,俄罗斯州比尔森,澳大利亚州比尔森80号,医学院医学院和大学医院,捷克共和国PILSEN。肺病学和植物学系查尔斯大学,皮尔森医学院,捷克共和国皮尔森的皮尔森大学医院,皮尔森大学医院。2。实体瘤应用基因组学中心,Genomac Research Institute,Drnovská1112/60,布拉格,捷克共和国。3。埃尔菲格尼,德尔诺夫斯卡1112/60,布拉格,捷克共和国。4。Charles University,Charles University,Hlavova 2030/8,捷克共和国布拉格的分析化学系。 5。 癌症治疗和组织再生实验室,生物医学中心,医学院,比尔森,查尔斯大学,Alej Svobody 76,捷克共和国皮尔森。 6。 成像系,位于捷克共和国皮尔森的查尔斯大学比尔森的医学院和大学医院。 7。 肿瘤学系,俄罗斯州比尔森,澳大利亚州比尔森80号,医学院医学院和大学医院,捷克共和国PILSEN。Charles University,Charles University,Hlavova 2030/8,捷克共和国布拉格的分析化学系。5。癌症治疗和组织再生实验室,生物医学中心,医学院,比尔森,查尔斯大学,Alej Svobody 76,捷克共和国皮尔森。6。成像系,位于捷克共和国皮尔森的查尔斯大学比尔森的医学院和大学医院。7。肿瘤学系,俄罗斯州比尔森,澳大利亚州比尔森80号,医学院医学院和大学医院,捷克共和国PILSEN。
细菌 Clostridium cellulolyticum 是整合生物加工 (CBP) 的有希望的候选者。然而,需要进行基因工程来提高这种生物的纤维素降解和生物转化效率,以满足标准的工业要求。在本研究中,CRISPR-Cas9n 用于将高效的 β -葡萄糖苷酶整合到 C. cellulolyticum 的基因组中,破坏乳酸脱氢酶 ( ldh ) 表达并降低乳酸产量。与野生型相比,工程菌株的 β -葡萄糖苷酶活性增加了 7.4 倍,ldh 表达减少了 70%,纤维素降解增加了 12%,乙醇产量增加了 32%。此外,ldh 被确定为异源表达的潜在位点。这些结果表明,同时进行 β -葡萄糖苷酶整合和乳酸脱氢酶破坏是提高 C. cellulolyticum 中纤维素到乙醇的生物转化率的有效策略。
• 谷物杀菌剂是一种三元配方,包括两种琥珀酸脱氢酶抑制剂 (SDHI) – 氟吡菌酰胺和异氟菌酰胺(也称为 iblon) – 以及脱甲基化抑制剂 (DMI) 丙硫菌唑
在卡纳塔克邦北部干旱地区的Bellary区进行的一项调查(第3区),重点是从事有机方法的农民,已有五年多。收集了有关花生,拉吉,洋葱,鼓和玉米种植系统中使用的有机输入的信息。来自每个农作物系统中30个选定的有机和常规农场的土壤样本揭示了有机耕作土壤中脱氢酶活性和总微生物种群的一致性增加。这表明有机实践对土壤生物学活动的积极影响。结果强调了有机农业通过升高的微生物计数和脱氢酶活性改善土壤健康的贡献,这归因于有机碳的增加。拥抱有机做法是可持续农业的有前途的策略,促进土壤健康和整体系统的可持续性。
酶活性通过用500μl的提取缓冲液进行vig口摇(20%(v/v)甘油,1%triton X-100(v/v),50 mm hepes – koH(ph 7.5),10 mm mgcl 2,1 mm edta,1%triton x-100(v/v),1%Triton X-100(V/V),1%Triton X-100(V/V),1%Triton X-100(V/V),1%Triton X-100(V/V),1%Triton X-100(V/V),1%Triton X-100(V/V),1%Triton X-100(v/v),1%X-100(v/v),1%MM emMM MM E.酸,1 mm苯甲米丁,20μM亮肽素,0.5 mM DTT,1 mM苯基甲基磺酰基氟化物,10%聚乙烯基 - 丙吡咯烷酮(W/V)]。葡萄糖激酶(GK),FRUC TOKINAPE(FK),谷氨酸脱氢酶(GDH),磷酸烯醇丙酮酸羧化酶(PEPC),苹果酸脱氢酶(MDH),丙酮酸激酶(PK),总浓酸酯(CM),米尔酸酯(CS),米尔酸酯(CM),米尔酸酯(CM)通过分光光度法测定NADP依赖性的异戊酸脱氢酶(ICDH)酶,并用机器化的微孔板测定法测定(Gibon等人。,2004)。在25°C孵育后,NAD(P)H的演变在340 nm处被固定在340 nm处。通过循环反应在570 nm处测量了GDH的活性,涉及在存在醇脱氢酶和苯嗪硫代硫酸盐的情况下,涉及3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑四唑。cs ac ac titive。(2003)。通过检查生物标准(番茄叶提取物)的恢复,并确保提取物的稀释对活动的估计没有影响,如Bénard和Gibon(2016)所述,可以通过检查生物标准的恢复(番茄叶提取物)来验证。
阿尔茨海默氏病(APP/PS1)的小鼠模型通常会随着年龄的增长而经历认知能力下降。G6PD表现出更好的保护,以防止与年龄相关的功能下降,包括代谢和肌肉功能的IM证明以及与野生型对应物相比的脆弱性。重要的是,G6PD-TG小鼠在男性和雌性中不同年龄的大脑中DNA氧化的积累减少。进一步探讨了调节神经退行性疾病中G6PD活性的潜在益处,生成了三重转基因小鼠(3XTG G6PD),过表达APP,PSEN1和G6PD基因。尽管海马中的淀粉样蛋白β(aβ)水平相似,但在3XTG G6PD小鼠中阻止了APP/PS1小鼠的认知下降特征。这挑战了阿尔茨海默氏病(AD)病因的主要假设以及该领域的大多数治疗努力,这是基于β在认知保存中至关重要的观念。值得注意的是,G6PD的抗氧化特性导致氧化应激参数降低,例如改善的GSH/GSSG和GSH/CYSSSSG比率,而没有氧化损伤标记的重大变化。此外,3XTG G6PD小鼠中的元波动变化增加了大脑能量状态,反对阿尔茨海默氏症模型中观察到的低代谢。值得注意的是,较高的呼吸汇率表明碳水化合物用量增加。由β为β的临床试验的相对失败引起了对淀粉样蛋白级联假设的严重怀疑,以及阿尔茨海默氏症药物的发展是否遵循正确的路径。我们的发现突出了靶向葡萄糖代谢酶的重要性,而不仅仅是在阿尔茨海默氏症研究中专注于β,主张更深入地探索葡萄糖代谢在认知保存中的作用。
1。Abul-Husn NS等。 一种蛋白质截短的HSD17B13变体和免受慢性肝病的保护。 NEJM 2018; 378:1096-1106。 2。 ma y等。 Handelman SK。 17-羟基类固醇脱氢酶13是一种肝视黄醇脱氢酶,与非酒精性脂肪肝病的组织学特征相关。 Hepatology 2019; 69:1504-1519。 3。 Luukkenon等。 羟基固醇17-β脱氢酶13变体增加磷脂,并预防非酒精性脂肪肝病中的纤维化。 JCI Insight 2020; 5(5):E132158。 4。 Qadri等。 磷脂酰胆碱代谢在非酒精性脂肪肝病中的异质性,J乙醇2022 5。 Luck等。 人类二元蛋白相互作用的参考图。 2020年4月; 580(7803):402–408。 doi:10.1038/s41586-020-2188-x 6。 Luukkonen等。 抑制HSD17B13通过抑制非酒精性脂肪性肝炎PNAS 2023中的嘧啶分解代谢来预防肝纤维化; 120(4)E2217543120 7。 Rong等。 lpCAT3依赖性产生的蛛网膜磷脂是甘油三酸酯分泌的关键决定因素,Elife 2015 https://doi.org/10.7554/elife.06557.001 8。 Glowchowski等。 脂质液滴和肝病:从基本生物学到临床意义,NAT Rev胃胃肝hepatol 2017 doi:10.1038/nrgastro.2017.32Abul-Husn NS等。一种蛋白质截短的HSD17B13变体和免受慢性肝病的保护。NEJM 2018; 378:1096-1106。 2。 ma y等。 Handelman SK。 17-羟基类固醇脱氢酶13是一种肝视黄醇脱氢酶,与非酒精性脂肪肝病的组织学特征相关。 Hepatology 2019; 69:1504-1519。 3。 Luukkenon等。 羟基固醇17-β脱氢酶13变体增加磷脂,并预防非酒精性脂肪肝病中的纤维化。 JCI Insight 2020; 5(5):E132158。 4。 Qadri等。 磷脂酰胆碱代谢在非酒精性脂肪肝病中的异质性,J乙醇2022 5。 Luck等。 人类二元蛋白相互作用的参考图。 2020年4月; 580(7803):402–408。 doi:10.1038/s41586-020-2188-x 6。 Luukkonen等。 抑制HSD17B13通过抑制非酒精性脂肪性肝炎PNAS 2023中的嘧啶分解代谢来预防肝纤维化; 120(4)E2217543120 7。 Rong等。 lpCAT3依赖性产生的蛛网膜磷脂是甘油三酸酯分泌的关键决定因素,Elife 2015 https://doi.org/10.7554/elife.06557.001 8。 Glowchowski等。 脂质液滴和肝病:从基本生物学到临床意义,NAT Rev胃胃肝hepatol 2017 doi:10.1038/nrgastro.2017.32NEJM 2018; 378:1096-1106。2。ma y等。Handelman SK。17-羟基类固醇脱氢酶13是一种肝视黄醇脱氢酶,与非酒精性脂肪肝病的组织学特征相关。Hepatology 2019; 69:1504-1519。3。Luukkenon等。羟基固醇17-β脱氢酶13变体增加磷脂,并预防非酒精性脂肪肝病中的纤维化。JCI Insight 2020; 5(5):E132158。4。Qadri等。 磷脂酰胆碱代谢在非酒精性脂肪肝病中的异质性,J乙醇2022 5。 Luck等。 人类二元蛋白相互作用的参考图。 2020年4月; 580(7803):402–408。 doi:10.1038/s41586-020-2188-x 6。 Luukkonen等。 抑制HSD17B13通过抑制非酒精性脂肪性肝炎PNAS 2023中的嘧啶分解代谢来预防肝纤维化; 120(4)E2217543120 7。 Rong等。 lpCAT3依赖性产生的蛛网膜磷脂是甘油三酸酯分泌的关键决定因素,Elife 2015 https://doi.org/10.7554/elife.06557.001 8。 Glowchowski等。 脂质液滴和肝病:从基本生物学到临床意义,NAT Rev胃胃肝hepatol 2017 doi:10.1038/nrgastro.2017.32Qadri等。磷脂酰胆碱代谢在非酒精性脂肪肝病中的异质性,J乙醇2022 5。Luck等。 人类二元蛋白相互作用的参考图。 2020年4月; 580(7803):402–408。 doi:10.1038/s41586-020-2188-x 6。 Luukkonen等。 抑制HSD17B13通过抑制非酒精性脂肪性肝炎PNAS 2023中的嘧啶分解代谢来预防肝纤维化; 120(4)E2217543120 7。 Rong等。 lpCAT3依赖性产生的蛛网膜磷脂是甘油三酸酯分泌的关键决定因素,Elife 2015 https://doi.org/10.7554/elife.06557.001 8。 Glowchowski等。 脂质液滴和肝病:从基本生物学到临床意义,NAT Rev胃胃肝hepatol 2017 doi:10.1038/nrgastro.2017.32Luck等。人类二元蛋白相互作用的参考图。2020年4月; 580(7803):402–408。doi:10.1038/s41586-020-2188-x 6。Luukkonen等。抑制HSD17B13通过抑制非酒精性脂肪性肝炎PNAS 2023中的嘧啶分解代谢来预防肝纤维化; 120(4)E2217543120 7。 Rong等。 lpCAT3依赖性产生的蛛网膜磷脂是甘油三酸酯分泌的关键决定因素,Elife 2015 https://doi.org/10.7554/elife.06557.001 8。 Glowchowski等。 脂质液滴和肝病:从基本生物学到临床意义,NAT Rev胃胃肝hepatol 2017 doi:10.1038/nrgastro.2017.32抑制HSD17B13通过抑制非酒精性脂肪性肝炎PNAS 2023中的嘧啶分解代谢来预防肝纤维化; 120(4)E2217543120 7。Rong等。 lpCAT3依赖性产生的蛛网膜磷脂是甘油三酸酯分泌的关键决定因素,Elife 2015 https://doi.org/10.7554/elife.06557.001 8。Rong等。lpCAT3依赖性产生的蛛网膜磷脂是甘油三酸酯分泌的关键决定因素,Elife 2015 https://doi.org/10.7554/elife.06557.001 8。Glowchowski等。脂质液滴和肝病:从基本生物学到临床意义,NAT Rev胃胃肝hepatol 2017 doi:10.1038/nrgastro.2017.32
摘要:糖尿病是一种严重危害人类健康的慢性代谢疾病。各种研究都强调了维持大脑充足的葡萄糖供应并随后保障大脑葡萄糖代谢的重要性。本研究的目的是阐明和揭示长期高血糖背景下反复低血糖引起的代谢改变,以进一步了解除大脑损害之外的影响。为此,化学诱发的糖尿病大鼠经历了反复胰岛素诱发的低血糖发作。通过分光光度法测量了大脑皮层组织提取物或分离的线粒体中糖酵解、戊糖磷酸途径和克雷布斯循环的关键酶的活性。使用蛋白质印迹分析来测定葡萄糖和单羧酸转运蛋白的蛋白质含量,它们是胰岛素信号通路和线粒体生物合成和动力学的参与者。我们观察到复发性低血糖会上调线粒体己糖激酶和克雷布斯循环酶(即丙酮酸脱氢酶、α-酮戊二酸脱氢酶和琥珀酸脱氢酶)的活性以及线粒体转录因子 A (TFAM) 的蛋白水平。这两种损伤都会增加核因子红细胞 2 相关因子 2 (NRF2) 的蛋白含量,并引起线粒体动力学的不同影响。发现胰岛素信号下游通路被下调,并且发现糖原合酶激酶 3 beta (GSK3 β ) 通过 Ser9 磷酸化降低和 Y216 磷酸化增加而被激活。有趣的是,低血糖和/或高血糖不会导致在神经元可塑性和记忆中起关键作用的 cAMP 反应元件结合蛋白 (CREB) 水平发生变化。这些发现提供了实验证据,表明在慢性高血糖的情况下,复发性低血糖能够引发大脑皮层的协调适应性反应,最终有助于维持脑细胞健康。
氟吡啶胺(FLS)[5-氟尿嘧啶,卡皮替滨]用于治疗几种实体瘤。二氢吡啶定脱氢酶(DPD)是限制率的FL催化酶,其缺乏可能会导致FL给药后严重,威胁生命或致命的毒性。在二氢吡啶二酰胺脱氢酶基因(dpyd)(dpyd*2a,dpyd*13,c.2846a> t,c.1129-5923c> g)治疗之前,使用二氢嘧啶脱氢酶基因(dpyd*2a,dpyd*2a,dpyd*2a,dpyd*2a,dpyd*2a,dpyd*2a,dpyd*2a,dpyd*2a,dpyd*2a,dpyd*2a)进行测试。 (例如,EMA)。但是,该小组识别出<20%的患有严重FL相关毒性的患者。累积近期证据强调了稀有(次要等位基因频率<1%)和新型DPYD遗传变异的潜在临床价值,以识别额外的DPD缺陷患者的额外部分,具有严重的FL相关毒性风险增加。在这篇综述中,我们旨在全面地描述有关FLEAD患者中新型和稀有DPYD变体作为毒性标记的潜在临床预测作用的可用证据,并讨论基于此类标记的临床应用来调整FL治疗的挑战和机会。尽管我们必须克服临床实施的现有障碍,但与当前的目标方法相比,对DPYD序列的全面评估(包括稀有和新颖的遗传变异)的全面评估(包括稀有和新颖的遗传变异)的可用数据支持可能会显着增强对处于危险的患者的预先识别。